Skip to main content
×
×
Home

Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites

  • Riley E. Brandt (a1), Vladan Stevanović (a2), David S. Ginley (a3) and Tonio Buonassisi (a1)
Abstract

The emergence of methyl-ammonium lead halide (MAPbX3) perovskites motivates the identification of unique properties giving rise to exceptional bulk transport properties, and identifying future materials with similar properties. Here, we propose that this “defect tolerance” emerges from fundamental electronic-structure properties, including the orbital character of the conduction and valence band extrema, the charge-carrier effective masses, and the static dielectric constant. We use MaterialsProject.org searches and detailed electronic-structure calculations to demonstrate these properties in other materials than MAPbX3. This framework of materials discovery may be applied more broadly, to accelerate discovery of new semiconductors based on emerging understanding of recent successes.

Copyright
Corresponding author
Address all correspondence to Riley E. Brandt, Tonio Buonassisi at rbrandt@alum.mit.edu; buonassisi@mit.edu
References
Hide All
1.Shockley, W. and Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510519 (1961). doi:10.1063/1.1736034.
2.Prince, M.B.: Silicon solar energy converters. J. Appl. Phys. 26, 534540 (1955). doi:10.1063/1.1722034.
3.Yu, L. and Zunger, A.: Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys. Rev. Lett. 108, 068701 (2012). doi:10.1103/PhysRevLett.108.068701.
4.Yu, L., Kokenyesi, R.S., Keszler, D.A., and Zunger, A.: Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3, 4348 (2013). doi:10.1002/aenm.201200538.
5.Wadia, C., Alivisatos, A.P., and Kammen, D.M.: Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 20722077 (2009). doi:10.1021/es8019534.
6.Powell, D.M., Winkler, M.T., Choi, H.J., Simmons, C.B., Needleman, D.B., and Buonassisi, T.: Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ. Sci. 5, 58745883 (2012). doi:10.1039/C2EE03489A.
7.Surek, T.: Crystal growth and materials research in photovoltaics: progress and challenges. J. Cryst. Growth 275, 292304 (2005). doi:10.1016/j.jcrysgro.2004.10.093.
8.Repins, I.L., Moutinho, H., Choi, S.G., Kanevce, A., Kuciauskas, D., Dippo, P., Beall, C.L., Carapella, J., DeHart, C., Huang, B., and Wei, S.H.: Indications of short minority-carrier lifetime in kesterite solar cells. J. Appl. Phys. 114, 084507 (2013). doi:10.1063/1.4819849.
9.Mangan, N.M., Brandt, R.E., Steinmann, V., Jaramillo, R., Li, J.V., Poindexter, J.R., Hartman, K., Sun, L., Gordon, R.G., and Buonassisi, T.: A path to 10% efficiency for tin sulfide devices. In 2014 IEEE 40th Photovoltaic Specialists Conf. PVSC, 2014; 2373–2378. doi:10.1109/PVSC.2014.6925404.
10.Unold, T. and Schock, H.W.: Nonconventional (non-silicon-based) photovoltaic materials. Annu. Rev. Mater. Res. 41, 297321 (2011). doi:10.1146/annurev-matsci-062910-100437.
11.Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., and Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341344 (2013). doi:10.1126/science.1243982.
12.Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., and Huang, J.: Electron–hole diffusion lengths >175 μm in solution grown CH3NH3PbI3 single crystals. Science 347, 967970 (2015). doi:10.1126/science.aaa5760.
13.Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., and Seok, S.I.: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476480 (2015). doi:10.1038/nature14133.
14.National Renewable Energy Laboratory. Best research-cell efficiencies. Best Research Cell Efficiency (accessed March 20, 2015). http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
15.Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 60506051 (2009). doi:10.1021/ja809598r.
16.Green, M.A., Ho-Baillie, A., and Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506514 (2014). doi:10.1038/nphoton.2014.134.
17.Stoumpos, C.C., Malliakas, C.D., and Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 90199038 (2013). doi:10.1021/ic401215x.
18.Mattheis, J., Werner, J., and Rau, U.: Finite mobility effects on the radiative efficiency limit of pn-junction solar cells. Phys. Rev. B 77, 085203 (2008). doi:10.1103/PhysRevB.77.085203.
19.Davis, J.R., Rohatgi, A., Hopkins, R.H., Blais, P.D., Rai-Choudhury, P., McCormick, J.R., and Mollenkopf, H.C.: Impurities in silicon solar cells. IEEE Trans. Electron Devices 27, 677687 (1980). doi:10.1109/T-ED.1980.19922.
20.Moutinho, H.R., Dhere, R.G., Al-Jassim, M.M., Ballif, C., Levi, D.H., Swartzlander, A.B., Young, M.R., and Kazmerski, L.L.: Study of CdTe/CdS solar cells using CSS CdTe deposited at low temperature. In 2000 IEEE 28th Photovoltaic Specialists Conf. PVSC, 2000; 646–649.
21.Kranz, L., Gretener, C., Perrenoud, J., Jaeger, D., Gerstl, S.S.A., Schmitt, R., Buecheler, S., and Tiwari, A.N.: Tailoring impurity distribution in polycrystalline CdTe solar cells for enhanced minority carrier lifetime. Adv. Energy Mater. 4, 1301400 (2014). doi:10.1002/aenm.201301400.
22.Repins, I.L., Metzger, W.K., Perkins, C.L., Li, J.V., and Contreras, M.A.: Measured minority-carrier lifetime and CIGS device performance. In 2009 IEEE 34th Photovoltaic Specilists Conf. PVSC, 2009; 000978–000983. doi:10.1109/PVSC.2009.5411126.
23.Miller, O.D., Yablonovitch, E., and Kurtz, S.R.: Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit. IEEE J. Photovolt. 2, 303311 (2012). doi:10.1109/JPHOTOV.2012.2198434.
24.Schiff, E.A.: Hole mobilities and the physics of amorphous silicon solar cells. J. Non-Cryst. Solids 352, 10871092 (2006). doi:10.1016/j.jnoncrysol.2005.11.074.
25.Metzger, W.K., Albin, D., Levi, D., Sheldon, P., Li, X., Keyes, B.M., and Ahrenkiel, R.K.: Time-resolved photoluminescence studies of CdTe solar cells. J. Appl. Phys. 94, 35493555 (2003). doi:10.1063/1.1597974.
26.Walter, D., Rosenits, F., Kopp, F., Reber, S., Berger, B., and Warta, W.: Determining the minority carrier lifetime in epitaxial silicon layers by micro-wave-detected photoconductivity measurements. In 25th Eur. Photovoltaic Solar Energy Conf., Valencia, Spain, 2010; 2078–2083. doi:10.4229/25thEUPVSEC2010-2CV.3.1.
27.Tiedje, T., Wronski, C.R., Abeles, B., and Cebulka, J.M.: Electron transport in hydrogenated amorphous silicon: drift mobility and junction capacitance. Sol. Cells 2, 301318 (1980). doi:10.1016/0379-6787(80)90034-4.
28.Sinton, R.A., Cuevas, A., and Stuckings, M.: Quasi-steady-state photoconductance, a new method for solar cell material and device characterization. In IEEE 25th Photovoltaic Specialists Conf., Washington, D.C., 1996; 457–460.
29.Katahara, J.K. and Hillhouse, H.W.: Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence. J. Appl. Phys. 116, 173504 (2014). doi:10.1063/1.4898346.
30.Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K.A.: Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013). doi:10.1063/1.4812323.
31.Yin, W.-J., Shi, T., and Yan, Y.: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014). doi:10.1063/1.4864778.
32.Yin, W.-J., Shi, T., and Yan, Y.: Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 46534658 (2014). doi:10.1002/adma.201306281.
33.Yamada, Y., Nakamura, T., Endo, M., Wakamiya, A., and Kanemitsu, Y.: Near-band-edge optical responses of solution-processed organic-inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes. Appl. Phys. Express 7, 032302 (2014). doi:10.7567/APEX.7.032302.
34.Walsh, A.: Principles of chemical bonding and band gap engineering in hybrid organic–inorganic halide perovskites. J. Phys. Chem. C 119, 57555760 (2015). doi:10.1021/jp512420b.
35.Du, M.H.: Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2, 90919098 (2014). doi:10.1039/C4TA01198H.
36.Zhang, S.B., Wei, S.-H., Zunger, A., and Katayama-Yoshida, H.: Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 57, 9642 (1998).
37.Zakutayev, A., Caskey, C.M., Fioretti, A.N., Ginley, D.S., Vidal, J., Stevanović, V., Tea, E., and Lany, S.: Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 11171125 (2014). doi:10.1021/jz5001787.
38.Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., Chen, Y., Hoogland, S., Rothenberger, A., Katsiev, K., Losovyj, Y., Zhang, X., Dowben, P.A., Mohammed, O.F., Sargent, E.H., and Bakr, O.M.: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519522 (2015). doi:10.1126/science.aaa2725.
39.Tvingstedt, K., Malinkiewicz, O., Baumann, A., Deibel, C., Snaith, H.J., Dyakonov, V., and Bolink, H.J.: Radiative efficiency of lead iodide based perovskite solar cells. Sci. Rep. 4, 6071 (2014). doi:10.1038/srep06071.
40.Miller, E.M., Zhao, Y., Mercado, C.C., Saha, S.K., Luther, J.M., Zhu, K., Stevanovic, V., Perkins, C.L., and van de Lagemaat, J.: High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 15841589 (2014). doi:10.1002/adma.201305172.
41.Umebayashi, T., Asai, K., Kondo, T., and Nakao, A.: Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 67, 155405 (2003). doi:10.1103/PhysRevB.67.155405.
42.Miller, E.M., Zhao, Y., Mercado, C.C., Saha, S.K., Luther, J.M., Zhu, K., Stevanović, V., Perkins, C.L. and van de Lagemaat, J.: Substrate-controlled band positions in CH3NH3PbI3 perovskite films. Phys. Chem. Chem. Phys. 16, 2212222130 (2014). doi:10.1039/C4CP03533J.
43.Umari, P., Mosconi, E., and De Angelis, F.: Relativistic solar cells. Sci. Rep. 4, 4467 (2014).
44.Sze, S.M. and Kwok, K.N.: Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons: Hoboken, NJ, 2007.
45.Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., van Schilfgaarde, M., and Walsh, A.: Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 25842590 (2014).
46.Bube, R.H.: Photoelectronic Properties of Semiconductors (Cambridge University Press: Cambridge, UK, 1992).
47.Lin, Q., Armin, A., Nagiri, R.C.R., Burn, P.L., and Meredith, P.: Electro-optics of perovskite solar cells. Nat. Photonics 9, 106112 (2015). doi:10.1038/nphoton.2014.284.
48.Juarez-Perez, E.J., Sanchez, R.S., Badia, L., Garcia-Belmonte, G., Kang, Y.S., Mora-Sero, I., and Bisquert, J.: Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 23902394 (2014). doi:10.1021/jz5011169.
49.Brivio, F., Walker, A.B., and Walsh, A.: Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1, 042111 (2013). doi:10.1063/1.4824147.
50.Kim, J., Lee, S.-H., Lee, J.H., and Hong, K.-H.: The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 13121317 (2014). doi:10.1021/jz500370k.
51.Lester, S.D., Ponce, F.A., Craford, M.G., and Steigerwald, D.A.: High dislocation densities in high efficiency GaN-based light-emitting diodes. Appl. Phys. Lett. 66, 1249 (1995). doi:10.1063/1.113252.
52.Carmody, M., Mallick, S., Margetis, J., Kodama, R., Biegala, T., Xu, D., Bechmann, P., Garland, J.W., and Sivananthan, S.: Single-crystal II–VI on Si single-junction and tandem solar cells. Appl. Phys. Lett. 96, 153502 (2010). doi:10.1063/1.3386529.
53.Lee, Y.S., Winkler, M.T., Siah, S.C., Brandt, R., and Buonassisi, T.: Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering. Appl. Phys. Lett. 98, 192115 (2011). doi:10.1063/1.3589810.
54.Seto, J.Y.W.: The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247 (1975). doi:10.1063/1.321593.
55.Yan, J., Gorai, P., Ortiz, B., Miller, S., Barnett, S.A., Mason, T., Stevanović, V., and Toberer, E.S.: Material descriptors for predicting thermoelectric performance. Energy Env. Sci. 8, 983994 (2014). doi:10.1039/C4EE03157A.
56.Feng, J.: Mechanical properties of hybrid organic–inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater. 2, 081801 (2014). doi:10.1063/1.4885256.
57.Krich, J.J., Halperin, B.I., and Aspuru-Guzik, A.: Nonradiative lifetimes in intermediate band photovoltaics—absence of lifetime recovery. J. Appl. Phys. 112, 013707 (2012). doi:10.1063/1.4732085.
58.De Wolf, S., Holovsky, J., Moon, S.-J., Löper, P., Niesen, B., Ledinsky, M., Haug, F.-J., Yum, J.-H., and Ballif, C.: Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 10351039 (2014). doi:10.1021/jz500279b.
59.Sellin, P.J.: Thick film compound semiconductors for X-ray imaging applications. Nucl. Instrum. Methods Phys. Res. A 563, 18 (2006). doi:10.1016/j.nima.2006.01.110.
60.Hautier, G., Miglio, A., Ceder, G., Rignanese, G.-M., and Gonze, X.: Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4, 2292 (2013). doi:doi:10.1038/ncomms3292.
61.Nechache, R., Harnagea, C., Licoccia, S., Traversa, E., Ruediger, A., Pignolet, A., and Rosei, F.: Photovoltaic properties of Bi2FeCrO6 epitaxial thin films. Appl. Phys. Lett. 98, 202902 (2011). doi:10.1063/1.3590270.
62.Rödel, J., Jo, W., Seifert, K.T.P., Anton, E.-M., Granzow, T., and Damjanovic, D.: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 11531177 (2009). doi:10.1111/j.1551-2916.2009.03061.x.
63.Mudring, A.-V.: Thallium halides – new aspects of the stereochemical activity of electron lone pairs of heavier main-group elements. Eur. J. Inorg. Chem. 2007, 882890 (2007). doi:10.1002/ejic.200600975.
64.Du, M.-H. and Singh, D.J.: Enhanced born charge and proximity to ferroelectricity in thallium halides. Phys. Rev. B 81, 144114 (2010).
65.Du, M.-H. and Singh, D.J.: Enhanced born charges in III-VII, IV-VII2, and V-VII3 compounds. Phys. Rev. B 82, 045203 (2010). doi:10.1103/PhysRevB.82.045203.
66.Ong, S.P., Richards, W.D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V.L., Persson, K.A., and Ceder, G.: Python materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314319 (2013). doi:10.1016/j.commatsci.2012.10.028.
67.Walsh, A., Payne, D.J., Egdell, R.G., and Watson, G.W.: Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 40, 4455 (2011). doi:10.1039/c1cs15098g.
68.Stevanović, V., Hartman, K., Jaramillo, R., Ramanathan, S., Buonassisi, T., and Graf, P.: Variations of ionization potential and electron affinity as a function of surface orientation: the case of orthorhombic SnS. Appl. Phys. Lett. 104, 211603 (2014). doi:10.1063/1.4879558.
69.Chung, I., Song, J.-H., Im, J., Androulakis, J., Malliakas, C.D., Li, H., Freeman, A.J., Kenney, J.T., and Kanatzidis, M.G.: CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134, 85798587 (2012). doi:10.1021/ja301539s.
70.Nechache, R., Harnagea, C., Li, S., Cardenas, L., Huang, W., Chakrabartty, J., and Rosei, F.: Bandgap tuning of multiferroic oxide solar cells. Nat. Photonics 9, 6167 (2015). doi:10.1038/nphoton.2014.255.
71.Lintereur, A.T., Qiu, W., Nino, J.C., and Baciak, J.: Characterization of bismuth tri-iodide single crystals for wide band-gap semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. A 652, 166169 (2011). doi:10.1016/j.nima.2010.12.013.
72.Vidal, J., Lany, S., Francis, J., Kokenyesi, R., and Tate, J.: Structural and electronic modification of photovoltaic SnS by alloying. J. Appl. Phys. 115, 113507 (2014). doi:10.1063/1.4868974.
73.Secco, E.A. and Sharma, A.: Structure stabilization: locking-in fast cation conductivity phase in TlI. J. Phys. Chem. Solids 56, 251254 (1995). doi:10.1016/0022-3697(94)00172-3.
74.Nitsche, R. and Merz, W.J.: Photoconduction in ternary V-VI-VII compounds. J. Phys. Chem. Solids 13, 154155 (1960).
75.Hahn, N.T., Rettie, A.J.E., Beal, S.K., Fullon, R.R., and Mullins, C.B.: n-BiSI thin films: selenium doping and solar cell behavior. J. Phys. Chem. C 116, 2487824886 (2012). doi:10.1021/jp3088397.
76.Hahn, N.T., Self, J.L., and Mullins, C.B.: BiSI micro-rod thin films: efficient solar absorber electrodes? J. Phys. Chem. Lett. 3, 15711576 (2012). doi:10.1021/jz300515p.
77.Zhang, X., Zhang, L., Xie, T., and Wang, D.: Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J. Phys. Chem. C 113, 73717378 (2009). doi:10.1021/jp900812d.
78.Zhao, K., Zhang, X., and Zhang, L.: The first BiOI-based solar cells. Electrochem. Commun. 11, 612615 (2009). doi:10.1016/j.elecom.2008.12.041.
79.Butler, K.T., Frost, J.M., and Walsh, A.: Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ. Sci. 8, 838848 (2015). doi:10.1039/C4EE03523B.
80.Gabrel'yan, B.V., Lavrentiev, A.A., Nikiforov, I.Y., and Sobolev, V.V.: Electronic energy structure of MBiS2 (M = Li, Na, K) calculated with allowance for the difference between the M-S and Bi-S bond lengths. J. Struct. Chem. 49, 788794 (2008). doi:10.1007/s10947-008-0140-2.
81.Kang, S., Hong, Y., Jeon, Y., and Facile, A.: Synthesis and characterization of sodium bismuth sulfide (NaBiS2) under hydrothermal condition. Bull. Korean Chem. Soc. 35, 18871890 (2014). doi:10.5012/bkcs.2014.35.6.1887.
82.McCarthy, T.J., Ngeyi, S.P., Liao, J.H., DeGroot, D.C., Hogan, T., Kannewurf, C.R., and Kanatzidis, M.G.: Molten salt synthesis and properties of three new solid-state ternary bismuth chalcogenides, beta.-CsBiS2, gamma.-CsBiS2, and K2Bi8Se13. Chem. Mater. 5, 331340 (1993). doi:10.1021/cm00027a016.
83.Timofte, T. and Mudring, A.-V.: Indium(I) Tetraiodoaluminate. Z. Anorg. Allg. Chem. 634, 622623 (2008). doi:10.1002/zaac.200700525.
84.Mel'nikova, S.V. and Zaitsev, A.I.: Ferroelectric phase transition in Cs3Bi2I9. Phys. Solid State 39, 16521654 (1997).
85.Peresh, E.Y., Sidei, V.I., Gaborets, N.I., Zubaka, O.V., Stercho, I.P., and Barchii, I.E.: Influence of the average atomic number of the A2TeC6 and A3B2C9 (A = K, Rb, Cs, Tl(I); B = Sb, Bi; C = Br, I) compounds on their melting point and band gap. Inorg. Mater. 50, 101106 (2014). doi:10.1134/S0020168514010166.
86.Jakubas, R. and Sobczyk, L.: Phase transitions in alkylammonium halogenoantimonates and bismuthates. Phase Transit. 20, 163193 (1990). doi:10.1080/01411599008206873.
87.Wu, L.-M., Wu, X.-T., and Chen, L.: Structural overview and structure–property relationships of iodoplumbate and iodobismuthate. Coord. Chem. Rev. 253, 27872804 (2009). doi:10.1016/j.ccr.2009.08.003.
88.Plackowski, T., Wlosewicz, D., Tomaszewski, P.E., Baran, J., and Marchewka, M.K.: Specific heat of (NH2(CH3)2)3Bi2I9. Acta Phys. Pol. A 87, 635641 (1995).
89.Kieslich, G., Sun, S., and Cheetham, A.K.: Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem. Sci. 5, 47124715 (2014). doi:10.1039/C4SC02211D.
90.Filip, M.R., Eperon, G.E., Snaith, H.J., and Giustino, F.: Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 5, 5757 (2014). doi:10.1038/ncomms6757.
91.Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 1116911186 (1996). doi:10.1103/PhysRevB.54.11169.
92.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868 (1996). doi:10.1103/PhysRevLett.77.3865.
93.Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 1795317979 (1994). doi:10.1103/PhysRevB.50.17953.
94.Stevanović, V., Lany, S., Zhang, X., and Zunger, A.: Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. Phys. Rev. B 85, 115104 (2012). doi:10.1103/PhysRevB.85.115104.
95.Wu, X., Vanderbilt, D., and Hamann, D.R.: Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B 72, 035105 (2005). doi:10.1103/PhysRevB.72.035105.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 164
Total number of PDF views: 1557 *
Loading metrics...

Abstract views

Total abstract views: 3632 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th June 2018. This data will be updated every 24 hours.