Skip to main content Accessibility help

In situ electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) for peripheral nerve interfaces

  • Jamie M. Murbach (a1), Seth Currlin (a2), Adrienne Widener (a1), Yuxin Tong (a3), Shrirang Chhatre (a4), Vivek Subramanian (a4), David C. Martin (a4), Blake N. Johnson (a3) and Kevin J. Otto (a1) (a2) (a5) (a6)...


The goal of this study was to perform in situ electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) in peripheral nerves to create a soft, precisely located injectable conductive polymer electrode for bi-directional communication. Intraneural PEDOT polymerization was performed to target both outer and inner fascicles via custom fabricated 3D printed cuff electrodes and monomer injection strategies using a combination electrode-cannula system. Electrochemistry, histology, and laser light sheet microscopy revealed the presence of PEDOT at specified locations inside of peripheral nerve. This work demonstrates the potential for using in situ PEDOT electrodeposition as an injectable electrode for recording and stimulation of peripheral nerves.


Corresponding author

Address all correspondence to Kevin J. Otto at


Hide All
1.Grill, W.M. and Mortimer, J.T.: Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes. J. Biomed. Mater. Res. 50, 215 (2000).
2.Lago, N., Ceballos, D., Rodríguez, F.J., Stieglitz, T., and Navarro, X.: Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Biomaterials 26, 2021 (2005).
3.Lago, N., Yoshida, K., Koch, K.P., and Navarro, X.: Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes. IEEE Trans. Biomed. Eng. 54, 281 (2007). la Oliva, N., Navarro, X., and del Valle, J.: Time course study of long-term biocompatibility and foreign body reaction to intraneural polyimide-based implants. J. Biomed. Mater. Res.—Part A 106, 746 (2017).
5.Abidian, M.R. and Martin, D.C.: Multifunctional Nanobiomaterials for Neural Interfaces. Adv. Funct. Mater. 19, 573 (2009).
6.Asplund, M., Nyberg, T., and Inganäs, O.: Electroactive polymers for neural interfaces. Polym. Chem. 1, 1374 (2010).
7.Cui, X. and Martin, D.C.: Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sensors Actuators B 89, 92 (2003).
8.Green, R. and Abidian, M.R.: Conducting polymers for neural prosthetic and neural interface applications. Adv. Mater. 27, 7620 (2015).
9.Wilks, S.J., Richardson-Burns, S.M., Hendricks, J.L., Martin, D.C., and Otto, K.J.: Poly(3,4-ethylenedioxythiophene) as a micro-neural interface material for electrostimulation. Front. Neuroeng. 2, 1 (2009).
10.Yang, J., Kim, D.H., Hendricks, J.L., Leach, M., Northey, R., and Martin, D.C.: Ordered surfactant-templated poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer on microfabricated neural probes. Acta Biomater. 1, 125 (2005).
11.Ludwig, K.A., Uram, J.D., Yang, J., Martin, D.C., and Kipke, D.R.: Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly (3,4-ethylenedioxythiophene) (PEDOT) film. J. Neural Eng 3, 59 (2006).
12.Wilks, S.J., Woolley, A.J., Ouyang, L., Martin, D.C., and Otto, K.J.: In vivo Polymerization of Poly(3,4-ethylenedioxythiophene) (PEDOT) in Rodent Cerebral Cortex. Proceedings of the 33rd Annual IEEE EMBC International Conference, 2011.
13.Cui, X.T., and Zhou, D.D.: Poly (3,4-Ethylenedioxythiophene) for chronic neural stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 502 (2007).
14.Kozai, T.D.Y., Catt, K., Du, Z., Na, K., Srivannavit, O., Haque, R.M., Seymour, J., Wise, K.D., Yoon, E., and Cui, X.T.: Chronic In vivo evaluation of PEDOT/CNT for stable neural recordings. IEEE Trans. Biomed. Eng. 63, 111 (2016).
15.Ludwig, K.A., Langhals, N.B., Joseph, M.D., Richardson-Burns, S.M., Hendricks, J.L., and Kipke, D.R.: Poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes. J. Neural Eng 8, 1 (2011).
16.Venkatraman, S., Hendricks, J., King, Z.A., Sereno, A.J., Richardson-Burns, S., Martin, D., and Carmena, J.M.: In vitro and In vivo evaluation of PEDOT microelectrodes for neural stimulation and recording. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 307 (2011).
17.Alba, N.A., Du, Z.J., Catt, K.A., Kozai, T.D.Y., and Cui, X.T.: In vivo electrochemical analysis of a PEDOT/MWCNT neural electrode coating. Biosensors 5, 618 (2015).
18.Boehler, C., Kleber, C., Martini, N., Xie, Y., Dryg, I., Stieglitz, T., Hofmann, U.G., and Asplund, M.: Actively controlled release of Dexamethasone from neural microelectrodes in a chronic in vivo study. Biomaterials 129, 176 (2017).
19.Chikar, J.A., Hendricks, J.L., Richardson-Burns, S.M., Raphael, Y., Pfingst, B.E., and Martin, D.C.: The use of a dual PEDOT and RGD-functionalized alginate hydrogel coating to provide sustained drug delivery and improved cochlear implant function. Biomaterials 33, 1982 (2012).
20.Bhagwat, N., Kiick, K.L., and Martin, D.C.: Electrochemical deposition and characterization of carboxylic acid functionalized PEDOT copolymers. J. Mater Res 29, 2835 (2014).
21.Feldman, K.E., and Martin, D.C.: Functional conducting polymers via Thiol-ene Chemistry. Biosensors 2, 305 (2012).
22.Guimard, N.K., Gomez, N., and Schmidt, C.E.: Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32, 876 (2007).
23.Ouyang, L., Shaw, C., Kuo, C., Griffin, A., and Martin, D.: In vivo polymerization of poly (3 4-ethylenedioxythiophene) in the living rat hippocampus does not cause a significant loss of performance in a delayed alternation task. J. Neural Eng. 11, 1 (2014).
24.Richardson-Burns, S.M., Hendricks, J.L., Foster, B., Povlich, L.K., Kim, D.H., and Martin, D.C.: Polymerization of the conducting polymer around living neural cells. Biomaterials 28, 1539 (2007a).
25.Richardson-Burns, S.M., Hendricks, J.L., and Martin, D.C.: Electrochemical polymerization of conducting polymers in living neural tissue. J. Neural Eng 4, L6 (2007b).
26.Egeland, B.M., Urbanchek, M.G., Peramo, A., Richardson-Burns, S.M., Martin, D.C., Kipke, D.R., Kuzon, W.M., and Cederna, P.S.: In vivo electrical conductivity across critical nerve gaps using Poly(3,4-ethylenedioxythiophene)-coated neural interfaces. Plast. Reconstr. Surg. 126, 1865 (2010).
27.Urbanchek, M.G., Kung, T.A., Frost, C.M., Martin, D.C., Larkin, L.M., Wollstein, A., and Cederna, P.A.: Development of a regenerative peripheral nerve interface for control of a neuroprosthetic limb. Biomed Res. Int. 2016, 1 (2016).
28.Tong, Y., Murbach, J.M., Subramanian, V., Chhatre, S., Delgado, F., Martin, D.C., Otto, K.J., Romero-Ortega, M., and Johnson, B.N.: A hybrid 3D printing and robotic-assisted embedding approach for design and fabrication of nerve cuffs with integrated locking mechanisms. MRS Adv (2018) doi. 10.1557/adv.2018.378.
29.Chung, K., Wallace, J., Kim, S.Y., Kalyanasundaram, S., Andalman, A.S., Davidson, T.J., Mirzabekov, J.J., Zalocusky, K.A., Mattis, J., Denisin, A.K., Pak, S., Berstein, H., Ramakrishnan, C., Grosenick, L., Gradinaru, V., and Deisseroth, K.: Structural and molecular interrogation of intact biological systems. Nature 497, 332 (2013).
30.Cogan, S.F.: Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275 (2008).

Related content

Powered by UNSILO

In situ electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) for peripheral nerve interfaces

  • Jamie M. Murbach (a1), Seth Currlin (a2), Adrienne Widener (a1), Yuxin Tong (a3), Shrirang Chhatre (a4), Vivek Subramanian (a4), David C. Martin (a4), Blake N. Johnson (a3) and Kevin J. Otto (a1) (a2) (a5) (a6)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.