Skip to main content
×
×
Home

Incorporation of graphene quantum dots to enhance photocatalytic properties of anatase TiO2

  • Sowbaranigha Chinnusamy (a1), Ravneet Kaur (a1), Anuja Bokare (a1) and Folarin Erogbogbo (a1)
Abstract

Different sized graphene quantum dots (GQDs) have been synthesized by an inexpensive wet chemical method using bird charcoal as a precursor. Obtained GQDs found to have luminescence and visible light absorption. These GQDs are further coupled with titanium dioxide (TiO2) to form TiO2–GQDs nanocomposites. GQD nanostructures exhibit band gap tunability and have the potential to enhance the photoabsorption in TiO2. The hybrid combination of the nanomaterials decrease the recombination of charge carriers, increase charge carrier mobility, and improve the overall photoconversion efficiency. The composites exhibit higher photocatalytic activity and rate constants value than pure TiO2.

Copyright
Corresponding author
*Address all correspondence to Folarin Erogbogbo at folarin.erogbogbo@sjsu.edu
References
Hide All
1. Song, C.: Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 115, 232 (2006).
2. Alharbi, F.H. and Kais, S.: Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renew. Sustain. Energy Rev. 43, 10731089 (2015).
3. Resasco, J., Zhang, H., Kornienko, N., Becknell, N., Lee, H., Guo, J., Briseno, A., and Yang, P.: TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cent. Sci. 2, 8088 (2016).
4. Guo, Q., Zhou, C., Ma, Z., Ren, Z., Fan, H., and Yang, X.: Elementary photocatalytic chemistry on TiO2 surfaces. Chem. Soc. Rev. 45, 37013730 (2016).
5. Yang, L., Yin, D., Shen, Y., Yang, M., Li, X., Han, X., Jiang, X., and Zhao, B.: Mesoporous semiconducting TiO2 with rich active sites as a remarkable substrate for surface-enhanced Raman scattering. Phys. Chem. Chem. Phys. 19, 1873118738 (2017).
6. Mendizabal, F., Mera-Adasme, R., Xu, W.-H., and Sundholm, D.: Electronic and optical properties of metalloporphyrins of zinc on TiO2 cluster in dye-sensitized solar-cells (DSSC). A quantum chemistry study. RSC Adv. 7, 742677742684 (2017).
7. Jiang, T., Zhang, L., Ji, M., Wang, Q., Zhao, Q., Fu, X., and Yin, H.: Carbon nanotubes/TiO2 nanotubes composite photocatalysts for efficient degradation of methyl orange dye. Particuology 11, 737742 (2013).
8. Zhang, D., Xie, F., Lin, P., and Choy, W.C.H.: Al-TiO2 composite-modified single-layer graphene as an efficient transparent cathode for organic solar cells. ACS Nano 7, 17401747 (2013).
9. Suave, J., Amorim, S.M., Ângelo, J., Andrade, L., Mendes, A., and Moreira, R.F.P.M.: TiO2/reduced graphene oxide composites for photocatalytic degradation in aqueous and gaseous medium. J. Photochem. Photobiol. Chem. 348, 326336 (2017).
10. Tian, H., Shen, K., Hu, X., Qiao, L., and Zheng, W.: N, S co-doped graphene quantum dots-graphene-TiO2 nanotubes composite with enhanced photocatalytic activity. J. Alloys Compd. 691, 369377 (2017).
11. Pan, D., Jiao, J., Li, Z., Guo, Y., Feng, C., Liu, Y., Wang, L., and Wu, M.: Efficient separation of electron–hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustain. Chem. Eng. 3, 24052413 (2015).
12. Long, R., Casanova, D., Fang, W-H, and Prezhdo, O.V.: Donor–acceptor interaction determines the mechanism of photoinduced electron injection from graphene quantum dots into TiO2: π-stacking supersedes covalent bonding. J. Am. Chem. Soc. 139, 26192629 (2017).
13. Williams, K.J., Nelson, C.A., Yan, X., Li, L.-S., and Zhu, X.: Hot electron injection from graphene quantum dots to TiO2 . ACS Nano 7, 13881394 (2013).
14. Fernando, K.A.S., Sahu, S., Liu, Y., Lewis, W.K., Guliants, E.A., Jafariyan, A., Wang, P., Bunker, C., and Sun, Y.P.: Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces 7, 83638376 (2015).
15. Peng, J., Gao, W., Gupta, B.K., Liu, Z., Romero-Aburto, R., Ge, L., Song, L., Alemany, L., Zhan, X., Gao, G., Vithayathil, S., Kaipparettu, B., Marti, A., Hayashi, T., Zhu, J., and Ajayan, P.: Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844849 (2012).
16. Ye, R., Xiang, C., Lin, J., Peng, Z., Huang, K., Yan, Z., Cook, N., Samuel, E., Hwang, C., Ruan, G., Ceriotti, G., Rajji, A., Marti, A., and Tour, J.: Coal as an abundant source of graphene quantum dots. Nat. Commun. 4, 2943 (2013). doi: 10.1038/ncomms3943.
17. Lee, J.G., Kim, D.Y., Park, J.J., Cha, Y.H., Yoon, J.Y., Jeon, H.S., Min, B.K., Swihart, M.T., Jin, S., Deyab, S., and Yoon, S.: Graphene–titania hybrid photoanodes by supersonic kinetic spraying for solar water splitting. J. Am. Ceram. Soc. 11, 36603668 (2014).
18. Gobi, N., Vijaykumar, D., Keles, O., and Erogbogbo, F.: Infusion of graphene quantum dots to create stronger, tougher, and brighter polymer composites. ACS Omega 2, 43564362 (2017).
19. Yuan, B., Sun, X., Yan, J., Xie, Z., Chen, P., and Zhou, S.: C96H30 tailored single-layer and single-crystalline graphene quantum dots. Phys. Chem. Chem. Phys.. 18, 2500225009 (2016).
20. Xie, J.D., Lai, G.-W., and Huq, M.M.: Hydrothermal route to graphene quantum dots: Effects of precursor and temperature. Diam. Relat. Mater. 79, 112118 (2017).
21. Fan, T., Zeng, W., Tang, W., Yuan, C., Tong, S., Cai, K., Liu, Y., Huang, W., Min, Y., and Epstein, A.: Controllable size-selective method to prepare graphene quantum dots from graphene oxide. Nanoscale Res. Lett. 10, 55 (2015). doi: 10.1186/s11671-015-0783-9.
22. Lin, L., Ron, M., Lu, S., Song, X., Zhong, Y., Yan, J., Wang, Y., and Chen, X.: A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution. Nanoscale 7, 18721878 (2015).
23. Zhang, F., Liu, F., Wang, C., Xin, X., Liu, J., Guo, S., and Zhang, J.: Effect of lateral size of graphene quantum dots on their properties and application. ACS Appl. Mater. Interfaces 8, 21042110 (2016).
24. Shen, K., Xue, X., Wang, X., Hu, X., Tian, H., and Zheng, W.: One-step synthesis of band-tunable N, S co-doped commercial TiO2/graphene quantum dots composites with enhanced photocatalytic activity. RSC Adv. 7, 2331923327 (2017).
25. Kim, S., Seo, J.K., Park, J.H., Song, Y., Meng, Y.S., and Heller, N.J.: White-light emission of blue-luminescent graphene quantum dots by europium (III) complex incorporation. Carbon 124, 479485 (2017).
26. Dong, Y., Shao, J., Chen, C., Li, H., Wang, R., Chi, Y., Lin, X., and Chen, G.: Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50, 47384743 (2012).
27. Gan, Z., Xu, H., and Hao, Y.: Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 8, 77947807 (2016).
28. Teng, C.Y., Nguyen, B.S., Yeh, T.F., Lee, Y.L., Chen, S.J., and Teng, H.: Roles of nitrogen functionalities in enhancing the excitation-independent green-color photoluminescence of graphene oxide dots. Nanoscale 9, 82568265 (2017).
29. Kumar, G., Thupakula, U., Kanti Sarkar, P., and Acharya, S.: Easy extraction of water-soluble graphene quantum dots for light emitting diodes. RSC Adv. 5, 2771127716 (2015).
30. Ola, O., and Maroto-Valer, M.M.: Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C Photochem. Rev. 24, 1642 (2015).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed