Skip to main content

Naphthalene diimide-based polymeric semiconductors. Effect of chlorine incorporation and n-channel transistors operating in water

  • Gi-Seong Ryu (a1), Zhihua Chen (a2), Hakan Usta (a3), Yong-Young Noh (a1) (a4) and Antonio Facchetti (a2) (a5)...

We demonstrate here the design, synthesis and characterization of two new chlorinated polymers, P(NDI2HD–T2Cl2) and P(NDI2OD–T2Cl2) based on N,N′-difunctionalized naphthalene diimide (NDI) and 3,3′-dichloro-2,2′-bithiophene (T2Cl2) moieties. Our results indicate that organic thin-film transistors (OTFTs) based on these new chlorinated polymers exhibit electron mobilities approaching 0.1 cm2V−1s−1 (I on:I off ~ 106–107), with far less ambipolarity due to their lower highest occupied molecular orbital energies, and they are more stable under deleterious high-humidity conditions (RH ~ 60%) and upon submersion in water, compared with those fabricated with the parent non-chlorinated polymers. In addition, OTFTs fabricated with the new chlorinated polymers exhibit excellent operational stabilities with <3% degradations upon bias-stress test.

Corresponding author
Address all correspondence to Antonio Facchetti, Yong-Young Noh, Hakan Usta at,,
Hide All
1. Facchetti A.: π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733758 (2011).
2. Kola S., Kim J.H., Ireland R., Yeh M.-L., Smith K., Guo W., and Katz H.E.: Pyromellitic diimide–ethynylene-based homopolymer film as an N-channel organic field-effect transistor semiconductor. ACS Macro Lett. 2, 664669 (2013).
3. Wang S., Fabiano S., Himmelberger S., Puzinas S., Crispin X., Salleo A., and Berggren M.: Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers. Proc. Natl. Acad. Sci. USA 112, 1059910604 (2015).
4. Lochner C.M., Khan Y., Pierre A., and Arias A.C.: All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5, 5745 (2014).
5. Piliego C., Holcombe T.W., Douglas J.D., Woo C.H., Beaujuge P.M., and Fréchet J.M.: Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J. Am. Chem. Soc. 132, 75957597 (2010).
6. Yeh M., Wang S., Martinez Hardigree J.F., Podzorov V., and Katz H.E.: Effect of side chain length on film structure and electron mobility of core-unsubstituted pyromellitic diimides and enhanced mobility of the dibrominated core using the optimized side chain. J. Mater. Chem. C 3, 30293037 (2015).
7. Himmelberger S., Duong D.T., Northrup J.E., Rivnay J., Koch F.P.V., Beckingham B.S., Stigelin N., Segalman R.A., Mannsfeld S.C.B., and Salleo A.: Role of side-chain branching on thin-film structure and electronic properties of polythiophenes. Adv. Funct. Mater. 25, 26162624 (2015).
8. Kumar B., Kaushik B.K., and Negi Y.S.: Organic thin film transistors: structures, models, materials, fabrication, and applications: a review. Polym. Rev. 54, 33111 (2014).
9. Himmelberger S., Vandewal K., Fei Z., Heeney M., and Salleo A.: Role of molecular weight distribution on charge transport in semiconducting polymers. Macromolecules 47, 71517157 (2014).
10. Pierre A., Deckman I., Lechêne P.B., and Arias A.C.: High detectivity all-printed organic photodiodes. Adv. Mater. 27, 64116417 (2015).
11. Pierre A., Sadeghi M., Payne M.M., Facchetti A., Anthony J.E., and Arias A.C.: All-printed flexible organic transistors enabled by surface tension-guided blade coating. Adv. Mater. 26, 57225727 (2014).
12. Mandal S., Dell'Erba G., Luzio A., Bucella S.G., Perinot A., Calloni A., Berti G., Bussetti G., Duò L., Facchetti A., Noh Y.-Y., and Caironi M.: Fully-printed, all-polymer, bendable and highly transparent complementary logic circuits. Org. Electron. 20, 132141 (2015).
13. Himmelberger S. and Salleo A.: Engineering semiconducting polymers for efficient charge transport. MRS Commun. 5, 383395 (2015).
14. Li J., Zhao Y., Tan H.S., Guo Y., Di C.-A., Yu G., Liu Y., Lin M., Lim S.H., and Zhou Y.: A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep. 2, 754 (2012).
15. Heeger A.J.: Semiconducting polymers: the third generation. Chem. Soc. Rev. 39, 23542371 (2010).
16. Baeg K.-J., Khim D., Kim J.-H., Kang M., You I.-K., Kim D.-Y., and Noh Y.-Y.: Improved performance uniformity of inkjet printed n-channel organic field-effect transistors and complementary inverters. Org. Electron. 12, 634640 (2011).
17. Fukutomi Y., Nakano M., Hu J.-Y., Osaka I., and Takimiya K.: Naphthodithiophenediimide (NDTI): synthesis, structure, and applications. J. Am. Chem. Soc. 135, 1144511448 (2013).
18. Sinha J., Lee S.J., Kong H., Swift T.W., and Katz H.E.: Tetrathiafulvalene (TTF)-functionalized thiophene copolymerized with 3,3″-didodecylquaterthiophene: synthesis, TTF trapping activity, and response to trinitrotoluene. Macromolecules 46, 708717 (2013).
19. Li Y., Sonar P., Singh S.P., Soh M.S., van Meurs M., and Tan J.: Annealing-free high-mobility diketopyrrolopyrrole–quaterthiophene copolymer for solution-processed organic thin film transistors. J. Am. Chem. Soc. 133, 21982204 (2011).
20. Usta H., Yilmaz M.D., Avestro A.-J., Boudinet D., Denti M., Zhao W., Stoddart J.F., and Facchetti A.: BODIPY–thiophene copolymers as p-channel semiconductors for organic thin-film transistors. Adv. Mater. 25, 43274334 (2013).
21. Yuan Y., Giri G., Ayzner A.L., Zoombelt A.P., Mannsfeld S.C., Chen J., Nordlund D., Toney M.F., Huang J., and Bao Z.: Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 5, 3005 (2014).
22. Ryu G.S., Park K.H., Park W.T., Kim Y.H., and Noh Y.Y.: High-performance diketopyrrolopyrrole-based organic field-effect transistors for flexible gas sensors. Org. Electron. 23, 7681 (2015).
23. So F. and Kondakov D.: Degradation mechanisms in small-molecule and polymer organic light-emitting diodes. Adv. Mater. 22, 37623777 (2010).
24. Ye S.H., Yin C.R., Zhou Z., Hu T.Q., Li Y.H., Li L., Xie L.H., and Huang W.: Solution-processed high-performance orange phosphorescent and white PLEDs with a high color-rendering index from an unprecedented π-stacked and π-conjugated host material. J. Polym. Sci. B: Polym. Phys. 52, 587595 (2014).
25. Aizawa N., Pu Y.J., Chiba T., Kawata S., Sasabe H., and Kido J.: Instant low-temperature cross-linking of poly (N-vinylcarbazole) for solution-processed multilayer blue phosphorescent organic light-emitting devices. Adv. Mater. 26, 75437546 (2014).
26. Dang M.T., Hirsch L., Wantz G., and Wuest J.D.: Controlling the morphology and performance of bulk heterojunctions in solar cells. lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester system. Chem. Rev. 113, 37343765 (2013).
27. Son H.J., Wang W., Xu T., Liang Y., Wu Y., Li G., and Yu L.: Synthesis of fluorinated polythienothiophene-co-benzodithiophenes and effect of fluorination on the photovoltaic properties. J. Am. Chem. Soc. 133, 18851894 (2011).
28. Li H., Hwang Y.J., Earmme T., Huber R.C., Courtright B.A., O'Brien C., Tolbert S.H., and Jenekhe S.A.: Polymer/polymer blend solar cells using tetraazabenzodifluoranthenediimide conjugated polymers as electron acceptors. Macromolecules 48, 17591766 (2015).
29. Yasuda T., Kuwabara J., Han L., and Kanbara T.: Improved power conversion efficiency of bulk-heterojunction organic photovoltaic cells using neat C 70 as an effective acceptor for an amorphous π-conjugated polymer. Org. Electron. 25, 99104 (2015).
30. Ullah M., Tandy K., Yambem S.D., Aljada M., Burn P.L., Meredith P., and Namdas E.B.: Simultaneous enhancement of brightness, efficiency, and switching in RGB organic light emitting transistors. Adv. Mater. 25, 6213 (2013).
31. Hiraoka K., Kusumoto Y., Ikezoe I., Kajii H., and Ohmori Y.: Properties of polymer light-emitting transistors with Ag-nanowire source/drain electrodes fabricated on polymer substrate. Thin Solid Films 554, 184188 (2014).
32. Usta H., Sheets W.C., Denti M., Generali G., Capelli R., Lu S., Yu X., Muccini M., and Facchetti A.: Perfluoroalkyl-functionalized thiazole-thiophene oligomers as n-channel semiconductors in organic field-effect and light-emitting transistors. Chem. Mater. 26, 65426556 (2014).
33. Tsumura A., Koezuka K., and Ando T.: Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 49, 12101212 (1986).
34. Lee T.W., Lee D.H., Shin J., Cho M.J., and Choi D.H.: Naphthodithiophene-diketopyrrolopyrrole-based donor–acceptor alternating π-conjugated polymers for organic thin-film transistors. J. Polym. Sci. A: Polym. Chem. 51, 52805290 (2013).
35. Pan H., Li Y., Wu Y., Liu P., Ong B.S., Zhu S., and Xu G.: Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors. J. Am. Chem. Soc. 129, 41124113 (2007).
36. Lei T., Dou J.-H., and Pei J.: Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv. Mater. 24, 64576461 (2012).
37. Mei J., Kim D.H., Ayzner A.L., Toney M.F., and Bao Z.: Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 133, 2013020133 (2011).
38. Gao X. and Zhao Z.: High mobility organic semiconductors for field-effect transistors. Sci. China Chem. 58, 947968 (2015).
39. Kim G., Kang S.J., Dutta G.K., Han Y.K., Shin T.J., Noh Y.Y., and Yang C.: A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/V·s that substantially exceeds Benchmark values for amorphous silicon semiconductors. J. Am. Chem. Soc. 136, 94779483 (2014).
40. Yun H.J., Kang S.J., Xu Y., Kim S.O., Kim Y.H., Noh Y.Y., and Kwon S.K.: Dramatic inversion of charge polarity in diketopyrrolopyrrole-based organic field-effect transistors via a simple nitrile group substitution. Adv. Mater. 26, 73007307 (2014).
41. Zhang F., Hu Y., Schuettfort T., Di C., Gao X., McNeill C.R., Thomsen L., Mannsfeld S.C.B., Yuan W., Sirringhaus H., and Zhu D.: Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm2 V–1 s–1 . J. Am. Chem. Soc. 135, 23382349 (2013).
42. Matsidik R., Komber H., Luzio A., Caironi M., and Sommer M.: Defect-free naphthalene diimidebithiophene copolymers with controlled molar mass and high performance via direct arylationpolycondensation. J. Am. Chem. Soc. 137, 67056711 (2015).
43. Tseng H.-R., Phan H., Luo C., Wang M., Perez L.A., Patel S.N., Ying L., Kramer E.J., Nguyen T.-Q., Bazan G.C., and Heeger A.J.: High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv. Mater. 26, 29932998 (2014).
44. Yan H., Chen Z., Zheng Y., Newman C., Quinn J.R., Dötz F., Kastler M., and Facchetti A.: A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679686 (2009).
45. Kim N.-K., Khim D., Xu Y., Lee S.-H., Kang M., Kim J., Facchetti A., Noh Y.-Y., and Kim D.Y.: Solution-processed barium salts as charge injection layers for high performance N-channel organic field-effect transistors. ACS Appl. Mater. Interfaces 6, 96149621 (2014).
46. Chen Z., Zheng Y., Yan H., and Facchetti A.: Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers. Synthesis and semiconducting properties in bottom-gate N-channel organic transistors. J. Am. Chem. Soc. 131, 89 (2009).
47. Chen H., Guo Y., Mao Z., Yu G., Huang J., Zhao Y., and Liu Y.: Naphthalenediimide-based copolymers incorporating vinyl-linkages for high-performance ambipolar field-effect transistors and complementary-like inverters under air. Chem. Mater. 25, 35893596 (2013).
48. Kim R., Amegadze P.S., Kang I., Yun H.J., Noh Y.Y., Kwon S.K., and Kim Y.H.: High-mobility air-stable naphthalene diimide-based copolymer containing extend π-conjugation for n-channel organic field effect transistors. Adv. Funct. Mater. 23, 57195727 (2013).
49. Guo X., Facchetti A., and Marks T.J.: Imide- and amide-functionalized polymer semiconductors. Chem. Rev. 114, 89439021 (2014).
50. Usta H., Kim C., Wang Z., Lu S., Huang H., Facchetti A., and Marks T.J.: Anthracenedicarboximides as air-stable N-channel semiconductors for thin-film transistors with remarkable current on–off ratios. J. Mater. Chem. 22, 44594472 (2012).
51. Jones B.A., Facchetti A., Wasielewski M.R., and Marks T.J.: Tuning orbital energetics in arylenediimide semiconductors. Materials design for ambient stability of n-type charge transport. J. Am. Chem. Soc. 129, 1525915278 (2007).
52. Anthopoulos T.D., Anyfantis G.C., Papavassiliou G.C., and de Leeuw D.M.: Air-stable ambipolar organic transistors. Appl. Phys. Lett. 90, 122105 (2007).
53. Wang M., Li J., Zhao G., Wu Q., Huang Y., Hu W., Gao X., Li H., and Zhu D.: High-performance organic field-effect transistors based on single and large-area aligned crystalline microribbons of 6,13-dichloropentacene. Adv. Mater. 25, 22292233 (2013).
54. He T., Stolte M., and Würthner F.: Air-stable n-channel organic single crystal field-effect transistors based on microribbons of core-chlorinated naphthalene diimide. Adv. Mater. 25, 69516955 (2013).
55. Gsänger M., Oh J.H., Könemann M., Höffken H.W., Krause A.-M., Bao Z., and Würthner F.: A crystal-engineered hydrogen-bonded octachloroperylenediimide with a twisted core: an n-channel organic semiconductor. Angew. Chem. 122, 752755 (2010).
56. Oh J.H., Suraru S.L., Lee W.Y., Könemann M., Höffken H.W., Röger C., Schmidt R., Chung Y., Chen W.C., Würthner F., and Bao Z.: High-performance air-stable n-type organic transistors based on core-chlorinated naphthalene tetracarboxylicdiimides. Adv. Funct. Mater. 20, 21482156 (2010).
57. Lee W.Y., Oh J.H., Suraru S.L., Chen W.C., Würthner F., and Bao Z.: High-mobility air-stable solution-shear-processed n-channel organic transistors based on core-chlorinated naphthalene diimides. Adv. Funct. Mater. 21, 41734181 (2011).
58. Yamada H., Okujimaa T., and Ono N.: Organic semiconductors based on small molecules with thermally or photochemically removable groups. Chem. Commun. 44, 29572974 (2008).
59. Li Y., Meng B., Tong H., Xie Z., and Wang L.: A chlorinated phenazine-based donor–acceptor copolymer with enhanced photovoltaic performance. Polym. Chem. 5, 18481851 (2014).
60. Xu J.M., Ng S.C., and Chan H.S.O.: A series of thienylene/phenylene-based polymers functionalized with electron-withdrawing or -donating groups: synthesis and characterization. Macromolecules 34, 43144323 (2001).
61. Lei T., Dou J.-H., Ma Z.-J., Liu C.-J., Wang J.-Y., and Pei J.: Chlorination as a useful method to modulate conjugated polymers: balanced and ambient-stable ambipolar high-performance field-effect transistors and inverters based on chlorinated isoindigo polymers. Chem. Sci. 4, 24472452 (2013).
62. Allred A.L.: Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 17, 215 (1961).
63. Tang M.L., Oh J.H., Reichardt A.D., and Bao Z.: Chlorination: a general route toward electron transport in organic semiconductors. J. Am. Chem. Soc. 131, 37333740 (2009).
64. Letizia J.A., Salata M.R., Tribout C.M., Facchetti A., Ratner M.A., and Marks T.J.: n-channel polymers by design: optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors. J. Am. Chem. Soc. 130, 96799694 (2008).
65. Goto H. and Akagi K.: Optically active conjugated polymers prepared from achiral monomers by polycondensation in a chiral nematic solvent. Angew. Chem. Int. Ed. 44, 4322–755 (2005).
66. Chaignon F., Falkenström M., Karlsson S., Blart E., Odobel F., and Hammarström L.: Very large acceleration of the photoinduced electron transfer in a Ru(bpy)3–naphthalene bisimide dyad bridged on the naphthyl core. Chem. Commun. 43, 6466 (2007).
67. Bard A.J. and Faulkner L.R.: Electrochemical Methods-Fundamentals and Applications (Wiley, New York, 1984).
68. Zhan X., Facchetti A., Barlow S., Marks T.J., Ratner M.A., Wasielewski M.R., and Marder S.R.: Rylene and related diimides for organic electronics. Adv. Mater. 23, 268284 (2011).
69. Jones B.A., Ahrens M.J., Yoon M.H., Facchetti A., Marks T.J., and Wasielewski M.R.: High-mobility air-stable n-type semiconductors with processing versatility: dicyanoperylene-3, 4: 9, 10-bis (dicarboximides). Angew. Chem. 116, 65236526 (2004).
70. Ji W.-Y., Xia X.-L., Ren X.-H., Wang F., Wang H.-J., and Diao K.-S.: The non-covalent bindings of CF2Cl2 with NO and SO2 . Struct. Chem. 24, 4954 (2013).
71. Adhikari U. and Scheiner S.: Substituent effects on Cl···N, S···N, and P···N noncovalent bonds. J. Phys. Chem. A 116, 34873497 (2012).
72. Chan H.S.O., Ng S.-C., Seowa S.-H., and Moderscheimb M.J.G.: Symmetrically disubstitutedPoly(bithiophene)s: influence of halogen substituents. J. Mater. Chem. 2, 11351139 (1992).
73. Guo X., Kim F.S., Seger M.J., Jenekhe S.A., and Watson M.D.: Naphthalene diimide-based polymer semiconductors: synthesis, structure–property correlations, and n-channel and ambipolar field-effect transistors. Chem. Mater. 24, 14341442 (2012).
74. Li Y., Vamvounis G., and Holdcroft S.: Facile functionalization of poly(3-alkylthiophene)s via electrophilic substitution. Macromolecules 34, 141143 (2001).
75. Aradilla D., Casanovas J., Estrany F., Iribarrena J.I., and Aleman C.: New insights into the characterization of poly(3-chlorothiophene) for electrochromic devices. Polym. Chem. 3, 436449 (2012).
76. de Oliveira E.F., Camilo A. Jr., da Silva-Filho L.C., and Lavarda F.C.: Effect of chemical modifications on the electronic structure of poly(3-hexylthiophene). J. Polym. Sci. B: Polym. Phys. 51, 842846 (2013).
77. Kim Y., Hong J., Oh J.H., and Yang C.: Naphthalene diimide incorporated thiophene-free copolymers with acene and heteroacene units: comparison of geometric features and electron-donating strength of Co-units. Chem. Mater. 25, 32513259 (2013).
78. Xu Y., Minari T., Tsukagoshi K., Chroboczek J., and Ghibaudo G.: Direct evaluation of low-field mobility and access resistance in pentacene field-effect transistors. J. Appl. Phys. 107, 114507-1114507-7 (2010).
79. Usta H., Risko C., Wang Z., Huang H., Deliomeroglu M.K., Zhukhovitskiy A., Facchetti A., and Marks T.J.: Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. J. Am. Chem. Soc. 131, 55865608 (2009).
80. Park J.H., Lee H.S., Lee J., Lee K., Lee G., Yoon K.H., Sung M.M., and Im S.: Stability-improved organic n-channel thin-film transistors with nm-thin hydrophobic polymer-coated high-k dielectrics. Phys. Chem. Chem. Phys. 14, 1420214206 (2012).
81. Hwang D.K., Fuentes-Hernandez C., Fenoll M., Yun M., Park J., Shim J.W., Knauer K.A., Dindar A., Kim H., Kim Y., Kim J., Cheun H., Payne M.M., Graham S., lm S., Anthony J., and Kippelen B.: Systematic reliability study of top-gate p-and n-channel organic field-effect transistors. ACS Appl. Mater. Interfaces 6, 33783386 (2014).
82. Yun M., Sharma A., Fuentes-Hernandez C., Hwang D.K., Dindar A., Singh S., Choi S., and Kippelen B.: Stable organic field-effect transistors for continuous and non-destructive chemical and biological sensing in aqueous environment. ACS Appl. Mater. Interfaces 6, 16161622 (2014).
83. Hwang D.K., Fuentes-Hernandez C., Kim J., Potscavage W.J., Kim S.J., and Kippelen B.: Top-gate organic field-effect transistors with high environmental and operational stability. Adv. Mater. 23, 12931298 (2011).
84. Cheng X., Caironi M., Noh Y.Y., Wang J., Newman C., Yan H., Facchetti A., and Sirringhaus H.: Air stable cross-linked Cytop ultrathin gate dielectric for high yield low-voltage top-gate organic field-effect transistors. Chem. Mater. 22, 15591566 (2010).
85. Khim D., Baeg K.-J., Kim J., Kang M., Lee S.-H., Chen Z., Facchetti A., Kim D.-Y., and Noh Y.-Y.: High performance and stable N-channel organic field-effect transistors by patterned solvent-vapor annealing. ACS Appl. Mater. Interfaces 5, 1074510752 (2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary materials

Ryu supplementary material
Ryu supplementary material 1

 Word (1.1 MB)
1.1 MB


Full text views

Total number of HTML views: 13
Total number of PDF views: 73 *
Loading metrics...

Abstract views

Total abstract views: 474 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th January 2018. This data will be updated every 24 hours.