Skip to main content

Opportunities in vanadium-based strongly correlated electron systems

  • Matthew Brahlek (a1), Lei Zhang (a1), Jason Lapano (a1), Hai-Tian Zhang (a1), Roman Engel-Herbert (a1), Nikhil Shukla (a2), Suman Datta (a2), Hanjong Paik (a3) and Darrell G. Schlom (a3)...

The diverse and fascinating properties of transition metal oxides stem from the strongly correlated electronic degrees of freedom; the scientific challenge and range of possible applications of these materials have caused fascination among physicists and materials scientists, thus capturing research efforts for nearly a century. Here, we focus on the binary V x O y and the ternary perovskite AVO3 and review the key aspects from the underlying physical framework and their basic properties, recent strides made in thin-film synthesis, to recent efforts to implement vanadium-based oxides for practical applications that augment existing technologies, which surpass limitations of conventional materials.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Opportunities in vanadium-based strongly correlated electron systems
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Opportunities in vanadium-based strongly correlated electron systems
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Opportunities in vanadium-based strongly correlated electron systems
      Available formats
Corresponding author
Address all correspondence to Roman Engel-Herbert at
Hide All
1. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38, 114117 (1965).
2. Koomey, J. and Naffziger, S.: Moore's law might be slowing down, but not energy efficiency. IEEE Spectrosc. (2015). (accessed February 1, 2017).
3. Cross, T.: Double, double, toil and trouble. Econ. Mar. (2016). (accessed February 1, 2017).
4. Lee, P.A. and Wen, X-G.: Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 1785 (2006).
5. Tokura, Y. and Tomioka, Y.: Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200, 123 (1999).
6. Schilling, A., Cantoni, M., Guo, J.D., and Ott, H.R.: Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363, 5658 (1993).
7. Heber, J.: Enter the oxides. Nature 459, 28 (2009).
8. Tokura, Y.: Correlated-electron physics in transition-metal oxides. Phys. Today 56, 5055 (2003).
9. Tokura, Y.: Orbital physics in transition-metal oxides. Science 288, 462468 (2000).
10. Imada, M., Fujimori, A., and Tokura, Y.: Metal–insulator transitions. Rev. Mod. Phys. 70, 10391263 (1998).
11. Goodenough, J.B.: Electronic and ionic transport properties and other physical aspects of perovskites. Rep. Prog. Phys. 67, 19151993 (2004).
12. Goodenough, J.B.: Anomalous properties of the vanadium oxides. Annu. Rev. Mater. Sci. 1, 101138 (1971).
13. Yamauchi, T., Isobe, M., and Ueda, Y.: Charge order and superconductivity in vanadium oxides. Solid State Sci. 7, 874881 (2005).
14. Ashcroft, N.W. and Mermin, N.D.: Solid State Physics (Rinehart, and Winston, Holt, 1976).
15. Cardona, M. and Pollak, F.H.: Energy-band structure of germanium and silicon: the k·p method. Phys. Rev. 142, 530543 (1966).
16. Fujimori, A., Yoshida, T., Okazaki, K., Tsujioka, T., Kobayashi, K., Mizokawa, T., Onoda, M., Katsufuji, T., Taguchi, Y., and Tokura, Y.: Electronic structure of Mott–Hubbard-type transition-metal oxides. J. Electron Spectros. Relat. Phenom. 117, 277286 (2001).
17. Mott, N.F. and Friedman, L.: Metal-insulator transitions in VO2, Ti2O3 and Ti2-xVxO3. Philos. Mag. 30, 389402 (1974).
18. Zaanen, J., Sawatzky, G.A., and Allen, J.W.: Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418421 (1985).
19. Pauling, L.: The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 10101026 (1929).
20. Morin, F.J.: Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 3, 3436 (1959).
21. Feinleib, J. and Paul, W.: Semiconductor-to-metal transition in V2O3 . Phys. Rev. 155, 841850 (1967).
22. Ladd, L.A. and Paul, W.: Optical and transport properties of high quality crystals of V2O4 near the metallic transition temperature. Solid State Commun. 7, 425428 (1969).
23. Hansmann, P., Toschi, A., Sangiovanni, G., Saha-Dasgupta, T., Lupi, S., Marsi, M., and Held, K.: Mott–Hubbard transition in V2O3 revisited. Phys. Status Solidi 250, 12511264 (2013).
24. Qazilbash, M.M., Schafgans, A.A., Burch, K.S., Yun, S.J., Chae, B.G., Kim, B.J., Kim, H.T., and Basov, D.N.: Electrodynamics of the vanadium oxides VO2 and V2O3 . Phys. Rev. B 77, 075124 (2008).
25. Dernier, P.D. and Marezio, M.: Crystal structure of the low-temperature antiferromagnetic phase of V2O3 . Phys. Rev. B 2, 37713776 (1970).
26. Chatterjee, I.: Interplay of orbital ordering and exchange interaction in V2O3 . J. Phys. Condens. Matter 13, 109114 (2001).
27. Griffith, J.S.: The Theory of Transition-Metal Ions (Cambridge University Press, Cambridge, 1961).
28. Shiina, R., Mila, F., Zhang, F-C., and Rice, T.M.: Atomic spin, molecular orbitals, and anomalous antiferromagnetism in insulating V2O3 . Phys. Rev. B 63, 144422 (2001).
29. Tanaka, A.: Electronic structure and phase transition in V2O3: importance of 3d spin-orbit interaction and lattice distortion. J. Phys. Soc. Japan 71, 10911107 (2002).
30. Chudnovskii, F.A., Terukov, E.I., and Khomskii, D.I.: Insulator-metal transition in V3O5 . Solid State Commun. 25, 573577 (1978).
31. Khoi, N.N., Simon, T.R., and Eastwood, H.K.: Phase transition in V3O5 . Mater. Res. Bull. 11, 873878 (1976).
32. Bahlawane, N. and Lenoble, D.: Vanadium oxide compounds: structure, properties, and growth from the gas phase. Chem. Vap. Depos. 20, 299311 (2014).
33. McWhan, D.B. and Rice, T.M.: Critical pressure for the metal-semiconductor transition in V2O3 . Phys. Rev. Lett. 22, 887890 (1969).
34. Cao, J., Gu, Y., Fan, W., Chen, L.Q., Ogletree, D.F., Chen, K., Tamura, N., Kunz, M., Barrett, C., Seidel, J., and Wu, J.: Extended mapping and exploration of the vanadium dioxide stress-temperature phase diagram. Nano Lett. 10, 26672673 (2010).
35. Gu, Y., Cao, J., Wu, J., and Chen, L-Q.: Thermodynamics of strained vanadium dioxide single crystals. J. Appl. Phys. 108, 083517 (2010).
36. Yonezawa, S., Muraoka, Y., Ueda, Y., and Hiroi, Z.: Epitaxial strain effects on the metal–insulator transition in V2O3 thin films. Solid State Commun. 129, 245248 (2004).
37. Muraoka, Y. and Hiroi, Z.: Metal–insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates. Appl. Phys. Lett. 80, 583 (2002).
38. Ahn, C.H., Bhattacharya, A., Di Ventra, M., Eckstein, J.N., Frisbie, C.D., Gershenson, M.E., Goldman, A.M., Inoue, I.H., Mannhart, J., Millis, A.J., Morpurgo, A.F., Natelson, D., and Triscone, J.-M.: Electrostatic modification of novel materials. Rev. Mod. Phys. 78, 11851212 (2006).
39. Ohtomo, A. and Hwang, H.Y.: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423426 (2004).
40. Goldman, A.M.: Electrostatic gating of ultrathin films. Annu. Rev. Mater. Res. 44, 4563 (2014).
41. Nakano, M., Shibuya, K., Okuyama, D., Hatano, T., Ono, S., Kawasaki, M., Iwasa, Y., and Tokura, Y.: Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487, 459462 (2012).
42. Jeong, J., Aetukuri, N., Graf, T., Schladt, T.D., Samant, M.G., and Parkin, S.S.P.: Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339, 14021405 (2013).
43. Ji, H., Wei, J., and Natelson, D.: Modulation of the electrical properties of VO2 nanobeams using an ionic liquid as a gating medium. Nano Lett. 12, 29882992 (2012).
44. Zhou, Y. and Ramanathan, S.: Mott memory and neuromorphic devices. Proc. IEEE 103, 12891310 (2015).
45. Kang, Y-B.: Critical evaluation and thermodynamic optimization of the VO–VO2.5 system. J. Eur. Ceram. Soc. 32, 31873198 (2012).
46. Hirotsu, Y. and Sato, H.: Periodic microsyntaxy in VnO2n−1 . Mater. Res. Bull. 15, 4144 (1980).
47. Katzke, H., Tolédano, P., and Depmeier, W.: Theory of morphotropic transformations in vanadium oxides. Phys. Rev. B 68, 024109 (2003).
48. Barin, I.: Thermochemical Data of Pure Substances (VCH Verlagsgesellschaft mbH, Weinheim (Federal Republic of Germany) and VCH Publishers, Inc., New York, NY, 1995).
49. Moshfegh, A.Z. and Ignatiev, A.: Formation and characterization of thin film vanadium oxides: auger electron spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, scanning electron microscopy, and optical reflectance studies. Thin Solid Films 198, 251268 (1991).
50. Tashman, J.W., Lee, J.H., Paik, H., Moyer, J.A., Misra, R., Mundy, J.A., Spila, T., Merz, T.A., Schubert, J., Muller, D.A., Schiffer, P., and Schlom, D.G.: Epitaxial growth of VO2 by periodic annealing. Appl. Phys. Lett. 104, 063104 (2014).
51. Kar, A., Shukla, N., Freeman, E., Paik, H., Liu, H., Engel-Herbert, R., Bharadwaja, S.S.N., Schlom, D.G., and Datta, S.: Intrinsic electronic switching time in ultrathin epitaxial vanadium dioxide thin film. Appl. Phys. Lett. 102, 072106 (2013).
52. Paik, H., Moyer, J.A., Spila, T., Tashman, J.W., Mundy, J.A., Freeman, E., Shukla, N., Lapano, J.M., Engel-Herbert, R., Zander, W., Schubert, J., Muller, D.A., Datta, S., Schiffer, P., and Schlom, D.G.: Transport properties of ultra-thin VO2 films on (001) TiO2 grown by reactive molecular-beam epitaxy. Appl. Phys. Lett. 107, 163101 (2015).
53. Fan, L.L., Chen, S., Wu, Y.F., Chen, F.H., Chu, W.S., Chen, X., Zou, C.W., and Wu, Z.Y.: Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy. Appl. Phys. Lett. 103, 131914 (2013).
54. Della Negra, M., Sambi, M., and Granozzi, G.: Ultrathin VOx/TiO2(110) (x≈1) film preparation by controlled oxidation of metal deposits. Surf. Sci. 436, 227236 (1999).
55. Pak, T.A.: Vapor pressure V2O5 . Zhurnal Fiziheskoi Khimii 46, 2121 (1972).
56. Koo, H., Yoon, S., Kwon, O.-J., Ko, K.-E., Shin, D., Bae, S.-H., Chang, S.-H., and Park, C.: Effect of lattice misfit on the transition temperature of VO2 thin film. J. Mater. Sci. 47, 63976401 (2012).
57. Yang, T.-H., Aggarwal, R., Gupta, A., Zhou, H., Narayan, R.J., and Narayan, J.: Semiconductor-metal transition characteristics of VO2 thin films grown on c- and r-sapphire substrates. J. Appl. Phys. 107, 053514 (2010).
58. Garry, G., Durand, O., and Lordereau, A.: Structural, electrical and optical properties of pulsed laser deposited VO2 thin films on R- and C-sapphire planes. Thin Solid Films 453–454, 427430 (2004).
59. Chang, Y., Yang, J., Kim, Y., Kim, D., Noh, T., Kim, D.-W., Oh, E., Kahng, B., and Chung, J.-S.: Surface versus bulk characterizations of electronic inhomogeneity in a VO2 thin film. Phys. Rev. B 76, 075118 (2007).
60. Griffiths, C.H.: Influence of stoichiometry on the metal-semiconductor transition in vanadium dioxide. J. Appl. Phys. 45, 2201 (1974).
61. Kim, H.K., You, H., Chiarello, R.P., Chang, H.L.M., Zhang, T.J., and Lam, D.J.: Finite-size effect on the first-order metal-insulator transition in VO2 films grown by metal-organic chemical-vapor deposition. Phys. Rev. B 47, 1290012907 (1993).
62. Jian, J., Chen, A., Zhang, W., and Wang, H.: Sharp semiconductor-to-metal transition of VO2 thin films on glass substrates. J. Appl. Phys. 114, 244301 (2013).
63. Lee, S., Meyer, T.L., Park, S., Egami, T., and Lee, H.N.: Growth control of the oxidation state in vanadium oxide thin films. Appl. Phys. Lett. 223515, 36 (2014).
64. Zhang, H.-T., Zhang, L., Mukherjee, D., Zheng, Y.-X., Haislmaier, R.C., Alem, N., and Engel-Herbert, R.: Wafer-scale growth of VO2 thin films using a combinatorial approach. Nat. Commun. 6, 8475 (2015).
65. Zhang, H-T., Eaton, C., Ye, H., and Engel-Herbert, R.: Phase stabilization of VO2 thin films in high vacuum using a co-deposition approach. J. Appl. Phys. 118, 185306 (2015).
66. Cui, Y. and Ramanathan, S.: Substrate effects on metal-insulator transition characteristics of rf-sputtered epitaxial VO2 thin films. J. Vac. Sci. Technol. A, Vac. Surf. Film 29, 041502 (2011).
67. Shigesato, Y., Enomoto, M., and Odaka, H.: Thermochromic VO2 films deposited by RF magnetron sputtering using V2O3 or V2O5 targets. Jpn. J. Appl. Phys. 39, 6016 (2000).
68. Ko, C., Yang, Z., and Ramanathan, S.: Work function of vanadium dioxide thin films across the metal-insulator transition and the role of surface nonstoichiometry. ACS Appl. Mater. Interfaces 3, 33963401 (2011).
69. Zhou, Y. and Ramanathan, S.: Heteroepitaxial VO2 thin films on GaN: Structure and metal-insulator transition characteristics. J. Appl. Phys. 112, 074114 (2012).
70. Zhao, Y., Hwan Lee, J., Zhu, Y., Nazari, M., Chen, C., Wang, H., Bernussi, A., Holtz, M., and Fan, Z.: Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates. J. Appl. Phys. 111, 053533 (2012).
71. Zimmers, A., Aigouy, L., Mortier, M., Sharoni, A., Wang, S., West, K., Ramirez, J., and Schuller, I.: Role of thermal heating on the voltage induced insulator-metal transition in VO2 . Phys. Rev. Lett. 110, 056601 (2013).
72. Zhu, N-W., Hu, M., Xia, X-X., Wei, X-Y., and Liang, J-R.: Preparation and modification of VO2 thin film on R-sapphire substrate by rapid thermal process. Chin. Phys. B 23, 048108 (2014).
73. Zhang, W., Wang, K., Fan, L., Liu, L., Guo, P., Zou, C., Wang, J., Qian, H., Ibrahim, K., Yan, W., Xu, F., and Wu, Z.: Hole carriers doping effect on the metal–insulator transition of N-incorporated vanadium dioxide thin films. J. Phys. Chem. C 118, 1283712844 (2014).
74. Hood, P.J. and DeNatale, J.F.: Millimeter-wave dielectric properties of epitaxial vanadium dioxide thin films. J. Appl. Phys. 70, 376 (1991).
75. West, K., Lu, J., and Yu, J.: Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition. J. Vac. Sci. Technol. A 26, 133 (2008).
76. Maruyama, T. and Ikuta, Y.: Vanadium dioxide thin films prepared by chemical vapour deposition from vanadium(III) acetylacetonate. J. Mater. Sci. 28, 50735078 (1993).
77. Ji, Y.D., Pan, T.S., Bi, Z., Liang, W.Z., Zhang, Y., Zeng, H.Z., Wen, Q.Y., Zhang, H.W., Chen, C.L., Jia, Q.X., and Lin, Y.: Epitaxial growth and metal-insulator transition of vanadium oxide thin films with controllable phases. Appl. Phys. Lett. 101, 071902 (2012).
78. Dagur, P., Mane, A.U., and Shivashankar, S.A.: Thin films of VO2 on glass by atomic layer deposition: microstructure and electrical properties. J. Cryst. Growth 275, e1223e1228 (2005).
79. Rampelberg, G., Schaekers, M., Martens, K., Xie, Q., Deduytsche, D., De Schutter, B., Blasco, N., Kittl, J., and Detavernier, C.: Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition. Appl. Phys. Lett. 98, 14 (2011).
80. Savo, S., Zhou, Y., Castaldi, G., Moccia, M., Galdi, V., Ramanathan, S., and Sato, Y.: Reconfigurable anisotropy and functional transformations with VO2-based metamaterial electric circuits. Phys. Rev. B 91, 134105 (2015).
81. Ionescu, A.M. and Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329337 (2011).
82. Jain, A. and Alam, M.A.: Prospects of hysteresis-free abrupt switching (0 mV/decade) in Landau switches. IEEE Trans. Electron Devices 60, 42694276 (2013).
83. Sze, S.M. and Ng, K.K.: Physics of Semiconductor Devices (John Wiley & Sons, Inc., Hoboken, NJ, 2006).
84. Zhirnov, V.V. and Cavin, R.K.: Nanoelectronics: negative capacitance to the rescue? Nat. Nanotechnol. 3, 7778 (2008).
85. Lu, H. and Seabaugh, A.: Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2, 4449 (2014).
86. Salahuddin, S. and Datta, S.: Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405410 (2008).
87. Khan, A.I., Chatterjee, K., Wang, B., Drapcho, S., You, L., Serrao, C., Bakaul, S.R., Ramesh, R., and Salahuddin, S.: Negative capacitance in a ferroelectric capacitor. Nat. Mater. 14, 182186 (2014).
88. Gao, W., Khan, A., Marti, X., Nelson, C., Serrao, C., Ravichandran, J., Ramesh, R., and Salahuddin, S.: Room-temperature negative capacitance in a ferroelectric–dielectric superlattice heterostructure. Nano Lett. 14, 58145819 (2014).
89. Islam Khan, A., Bhowmik, D., Yu, P., Joo Kim, S., Pan, X., Ramesh, R., and Salahuddin, S.: Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99, 113501 (2011).
90. Catalan, G., Jiménez, D., and Gruverman, A.: Ferroelectrics: negative capacitance detected. Nat. Mater. 14, 137139 (2015).
91. Pandey, R., Madan, H., Liu, H., Chobpattana, V., Barth, M., Rajamohanan, B., Hollander, M.J., Clark, T., Wang, K., Kim, J.-H., Gundlach, D., Cheung, K.P., Suehle, J., Engel-Herbert, R., Stemmer, S., and Datta, S.: Demonstration of p-type In0.7Ga0.3As/GaAs0.35Sb0.65; and n-type GaAs0.4Sb0.6/In0.65Ga0.35As complimentary heterojunction vertical tunnel FETs for ultra-low power logic. In 2015 Symp. VLSI Technol, VLSI Technol. T206–T207, IEEE, Washington, DC, 2015. doi: 10.1109/VLSIT.2015.7223676.
92. Gopalakrishnan, K., Griffin, P.B., and Plummer, J.D.: Impact ionization MOS (I-MOS)—Part I: device and circuit simulations. IEEE Trans. Electron Devices 52, 6976 (2005).
93. Gopalakrishnan, K., Woo, R., Jungemann, C., Griffin, P.B., and Plummer, J.D.: Impactionization MOS (I-MOS)—Part II: Experimental results. IEEE Trans. Electron Devices 52, 7784 (2005).
94. Theis, T.N., Solomon, P.M., Dennard, R.H., Gaensslen, F.H., Rideout, V.L., Bassous, E., LeBlanc, A.R., Haensch, W., Banerjee, S., Richardson, W., Coleman, J., Chatterjee, A., Appenzeller, J., Lin, Y.-M., Knoch, J., Avouris, P., Salahuddin, S., Datta, S., Li, J., Kopp, T., Mannhart, J., Mannhart, J., and Schlom, D.G.: It's time to reinvent the transistor! Science 327, 16001601 (2010).
95. Inoue, I.H. and Rozenberg, M.J.: Taming the Mott transition for a novel Mott transistor. Adv. Funct. Mater. 18, 22892292 (2008).
96. Hwang, H.Y., Iwasa, Y., Kawasaki, M., Keimer, B., Nagaosa, N., and Tokura, Y.: Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103113 (2012).
97. Newns, D.M., Misewich, J.A., Tsuei, C.C., Gupta, A., Scott, B.A., and Schrott, A.: Mott transition field effect transistor. Appl. Phys. Lett. 73, 780 (1998).
98. Ruzmetov, D., Gopalakrishnan, G., Ko, C., Narayanamurti, V., and Ramanathan, S.: Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer. J. Appl. Phys. 107, 114516 (2010).
99. Hormoz, S. and Ramanathan, S.: Limits on vanadium oxide Mott metal–insulator transition field-effect transistors. Solid State Electron. 54, 654659 (2010).
100. Kim, H.-T., Chae, B.-G., Youn, D.-H., Maeng, S.-L., Kim, G., Kang, K.-Y., and Lim, Y.-S.: Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices. New J. Phys. 6, 5252 (2004).
101. Martens, K., Jeong, J.W., Aetukuri, N., Rettner, C., Shukla, N., Freeman, E., Esfahani, D.N., Peeters, F.M., Topuria, T., Rice, P.M., Volodin, A., Douhard, B., Vandervorst, W., Samant, M.G., Datta, S., and Parkin, S.S.P.: Field effect and strongly localized carriers in the metal-insulator transition material VO2 . Phys. Rev. Lett. 115, 196401 (2015).
102. Zhou, Y. and Ramanathan, S.: Relaxation dynamics of ionic liquid—VO2 interfaces and influence in electric double-layer transistors. J. Appl. Phys. 111, 084508 (2012).
103. Shukla, N., Thathachary, A.V., Agrawal, A., Paik, H., Aziz, A., Schlom, D.G., Gupta, S.K., Engel-Herbert, R., and Datta, S.: A steep-slope transistor based on abrupt electronic phase transition. Nat. Commun. 6, 7812 (2015).
104. Wen, H., Guo, L., Barnes, E., Lee, J.H., Walko, D.A., Schaller, R.D., Moyer, J.A., Misra, R., Li, Y., Dufresne, E.M., Schlom, D.G., Gopalan, V., and Freeland, J.W.: Structural and electronic recovery pathways of a photoexcited ultrathin VO2 film. Phys. Rev. B 88, 165424 (2013).
105. Türel, Ö., Lee, J.H., Ma, X., and Likharev, K.K.: Neuromorphic architectures for nanoelectronic circuits. Int. J. Circuit Theory Appl. 32, 277302 (2004).
106. Wu, C.W.: Graph coloring via synchronization of coupled oscillators. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 45, 974978 (1998).
107. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., and Shmoys, D.B.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization (John Wiley & Sons, New York, 1985).
108. Hölzel, R.W. and Krischer, K.: Pattern recognition with simple oscillating circuits. New J. Phys. 13, 073031 (2011).
109. Vassilieva, E., Pinto, G., de Barros, J.A., and Suppes, P.: Learning pattern recognition through quasi-synchronization of phase oscillators. IEEE Trans. Neural Netw. 22, 8495 (2011).
110. Shukla, N., Parihar, A., Cotter, M., Barth, M., Li, X., Chandramoorthy, N., Paik, H., Schlom, D.G., Narayanan, V., Raychowdhury, A., and Datta, S.: Pairwise coupled hybrid vanadium dioxide-MOSFET (HVFET) oscillators for non-Boolean associative computing. In 2014 IEEE Int. Electron Devices Meet. 28.7.1–28.7.4, IEEE, San Francisco, CA, 2014.
111. Wang, D.L. and Terman, D.: Locally excitatory globally inhibitory oscillator networks. IEEE Trans. Neural Netw. 6, 283286 (1995).
112. Parihar, A., Shukla, N., Datta, S., and Raychowdhury, A.: Exploiting synchronization properties of correlated electron devices in a non-Boolean computing fabric for template matching. IEEE J. Emerg. Sel. Top. Circuits Syst. 4, 450459 (2014).
113. Watts, D.J. and Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440442 (1998).
114. Pickett, M.D., Medeiros-Ribeiro, G., and Williams, R.S.: A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114117 (2012).
115. Dumas-Bouchiat, F., Champeaux, C., Catherinot, A., Crunteanu, A., and Blondy, P.: Rf-microwave switches based on reversible semiconductor-metal transition of VO2 thin films synthesized by pulsed-laser deposition. Appl. Phys. Lett. 91, 223505 (2007).
116. Ha, S.D., Zhou, Y., Fisher, C.J., Ramanathan, S., and Treadway, J.P.: Electrical switching dynamics and broadband microwave characteristics of VO2 radio frequency devices. J. Appl. Phys. 113, 184501 (2013).
117. Nechay, B., Howell, R., Stewart, E., Parke, J., Freitag, R., Cramer, H., King, M., Gupta, S., Hartman, J., Borodulin, P., Snook, M., Wathuthanthri, I., Renaldo, K., and Henry, H.G.: Optimizing performance of super-lattice castellated field effect transistors. In IEEE Compound Semiconductor Integrated Circuit Symp., La Jolla, CA, 2014, pp. 15.
118. Madan, H., Zhang, H.-T., Jerry, M., Mukherjee, D., Alem, N., Engel-Herbert, R., and Datta, S.: 26.5 Terahertz electrically triggered RF switch on epitaxial VO2-on-Sapphire (VOS) wafer. In 2015 IEEE Int. Electron Devices Meeting 9.3.1–9.3.4, IEEE, Washington, DC, 2015.
119. Howell, R.S., Stewart, E.J., Freitag, R., Parke, J., Nechay, B., Harlan, C., King, M., Gupta, S., Hartman, J., Borodulin, P., Snook, M., Wathuthanthri, I., Ralston, P., ReNaldo, K., and Henry, H.G.: Low loss, high performance 1–18 GHz SPDT based on the novel super-lattice castellated field effect transistor (SLCFET). In Semiconductor, 2014 IEEE Compound & Integrated Circuit Symp. (CSICS), IEEE, 2014, La Jolla, CA, 2014.
120. Kamitsuna, H., Yamane, Y., Tokumitsu, M., Sugahara, H., and Muraguchi, M.: Low-power InP-HEMT switch ICs integrating miniaturized 2×2 switches for 10-Gb/s systems. IEEE J. Solid-State Circuits 41, 452460 (2006).
121. Xiao, Q., Samiotes, G., Galluccio, T., and Rizzi, B.: A high performance DC-20 GHz SPDT switch in a low cost plastic QFN package. In Microwave Integrated Circuits Conf., EuMA, 2009.
122. El-Hinnawy, N., Borodulin, P., Jones, E.B., Wagner, B.P., King, M.R., John Mason, J., Bain, J., Paramesh, J.T.E.S., Howell, R.S., Lee, M.J., and Young, R.M.: 12.5 THz Fco GeTe inline phase-change switch technology for reconfigurable RF and switching applications. In 2014 IEEE Compound Semiconductor Integrated Circuit Symp. (CSICS), Rome, Italy, n.d.
123. Wolf, R., Joseph, A., Botula, A., and Slinkman, J.: A Thin-film SOI 180nm CMOS RF switch. In IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2009 (SiRF ’09), San Diego, CA, 2009.
124. Grant, P.D., Denhoff, M.W., and Mansour, R.R.: A comparison between RF MEMS switches and semiconductor switches. In Proc. of the 2004 Int. Conf. on MEMS, NANO and Smart Systems (ICMENS'04), Banff, Alberta, Canada, 2004.
125. Campbell, C.F. and Dumka, D.C.: Wideband high power GaN on SiC SPDT switch MMICs. In 2010 IEEE MTT-S Int. Microwave Symp. Digest, Anaheim, CA, 2010.
126. Mennai, A., Bessaudou, A., Cosset, F., Guines, C., Blondy, P., Crunteanu, A.: Bistable RF switches using Ge2Sb2Te5 phase change material. In 2014 IEEE MTT-S Int. Microwave Symp. (IMS2014), IEEE, Tampa, FL, 2014.
127. Hellwege, K-H. and Hellwege, A.M.: Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, Group III (Springer-Verlag Berlin and Heidelberg GmbH & Co. K., 12a, 1978).
128. Glazer, A.M.: The classification of tilted octahedra in perovskites. Acta Crystallogr. Sect. B, Struct. Crystallogr. Cryst. Chem. 28, 33843392 (1972).
129. Glazer, A.M.: Simple ways of determining perovskite structures. Acta Crystallogr. Sect. A 31, 756762 (1975).
130. Woodward, D.I. and Reaney, I.M.: Electron diffraction of tilted perovskites. Acta Crystallogr. Sect. B Struct. Sci. 61, 387399 (2005).
131. O'Keeffe, M. and Hyde, B.G.: Some structures topologically related to cubic perovskite (E21), ReO3 (D09) and Cu3Au (L12). Acta Crystallogr. B 33, 38023813 (1977).
132. Rondinelli, J.M., May, S.J., and Freeland, J.W.: Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull. 37, 261270 (2012).
133. Zhang, L., Zhou, Y., Guo, L., Zhao, W., Barnes, A., Zhang, H.-T., Eaton, C., Zheng, Y., Brahlek, M., Haneef, H.F., Podraza, N.J., Chan, M.H.W., Gopalan, V., Rabe, K.M., and Engel-Herbert, R.: Correlated metals as transparent conductors. Nat. Mater. 15, 204215 (2016).
134. Yoshida, T., Tanaka, K., Yagi, H., Ino, A., Eisaki, H., Fujimori, A., and Shen, Z.X.: Direct observation of the mass renormalization in SrVO3 by angle resolved photoemission spectroscopy. Phys. Rev. Lett. 95, 14 (2005).
135. Yoshida, T., Kobayashi, M., Yoshimatsu, K., Kumigashira, H., and Fujimori, A.: Correlated electronic states of SrVO3 revealed by angle-resolved photoemission spectroscopy. J. Electron Spectrosc. Relat. Phenom. 208, 1116 (2016).
136. Fujimori, A., Hase, I., Namatame, H., Fujishima, Y., Tokura, Y., Takegahara, K., and de Groot, F.M.F.: Evolution of the spectral function in Mott-Hubbard systems with d1 configuration. Phys. Rev. Lett. 69, 17961799 (1992).
137. Morikawa, K., Mizokawa, T., Kobayashi, K., Fujimori, A., Eisaki, H., Uchida, S., Iga, F., and Nishihara, Y.: Spectral weight transfer and mass renormalization in Mott-Hubbard systems SrVO3 and CaVO3: influence of long-range Coulomb interaction. Phys. Rev. B 52, 1371113714 (1995).
138. Mossanek, R.J.O., Abbate, M., Yoshida, T., Fujimori, A., Yoshida, Y., Shirakawa, N., Eisaki, H., Kohno, S., and Vicentin, F.C.: Evolution of the spectral weight in the Mott-Hubbard series SrVO3-CaVO3-LaVO3-YVO3 . Phys. Rev. B 78, 075103 (2008).
139. Goodenough, J.B. and Longo, M.: Crystallogr. Prop. Compd. with perovskite or perovskite-related Struct, edited by Hellwege, K.-H. and Hellwege, A.M. (SpringerMaterials—The Landolt-Börnstein Database, Berlin, 1970), p. 126.
140. Yoshida, T., Hashimoto, M., Takizawa, T., Fujimori, A., Kubota, M., Ono, K., and Eisaki, H.: Mass renormalization in the bandwidth-controlled Mott-Hubbard systems SrVO3 and CaVO3 studied by angle-resolved photoemission spectroscopy. Phys. Rev. B, Condens. Matter Mater. Phys. 82, 37 (2010).
141. Pavarini, E., Biermann, S., Poteryaev, A., Lichtenstein, A.I., Georges, A., and Andersen, O.K.: Mott transition and suppression of orbital fluctuations in orthorhombic 3d1 perovskites. Phys. Rev. Lett. 92, 176403-1-176403-4 (2004).
142. Inoue, I.H., Hase, I., Aiura, Y., Fujimori, A., Haruyama, Y., Maruyama, T., and Nishihara, Y.: Systematic development of the spectral function in the 3d1 Mott–Hubbard system Ca1−xSrxVO3 . Phys. Rev. Lett. 74, 25392542 (1995).
143. Makino, H.: Specific heat of a single-crystalline 3d1 perovskite. J. Phys. Condens. Matter. 10, 1154111545 (1998).
144. Eguchi, R., Kiss, T., Tsuda, S., Shimojima, T., Mizokami, T., Yokoya, T., Chainani, A., Shin, S., Inoue, I. H., Togashi, T., Watanabe, S., Zhang, C.Q., Chen, C.T., Arita, M., Shimada, K., Namatame, H., and Taniguchi, M.: Bulk- and surface-sensitive high-resolution photoemission study of two Mott–Hubbard systems: SrVO3 and CaVO3 . Phys. Rev. Lett. 96, 076402 (2006).
145. Sheets, W.C., Mercey, B., and Prellier, W.: Effect of charge modulation in (LaVO3)m(SrVO3)n superlattices on the insulator-metal transition. Appl. Phys. Lett. 91, 192102 (2007).
146. Liberati, M., Chopdekar, R.V., Mehta, V., Arenholz, E., and Suzuki, Y.: Epitaxial growth and characterization of CaVO3 thin films. J. Magn. Magn. Mater. 321, 28522854 (2009).
147. Kim, D.-W., Kim, D.H., Noh, T.W., Char, K., Park, J.-H., Lee, K.-B., and Kim, H.-D.: Interface chemistry and electrical properties of SrVO3/LaAlO3 heterostructures. J. Appl. Phys. 88, 7056 (2000).
148. Kim, D., Kim, D.-W., Kang, B., Noh, T., Lee, D., Lee, K.-B., and Lee, S.: Electrical properties of SrVO3/SrTiO3 superlattices grown by laser molecular beam epitaxy. Solid State Commun. 114, 473476 (2000).
149. Hotta, Y., Susaki, T., and Hwang, H.: Polar discontinuity doping of the LaVO3/SrTiO3 interface. Phys. Rev. Lett. 99, 236805 (2007).
150. Takizawa, M., Hotta, Y., Susaki, T., Ishida, Y., Wadati, H., Takata, Y., Horiba, K., Matsunami, M., Shin, S., Yabashi, M., Tamasaku, K., Nishino, Y., Ishikawa, T., Fujimori, A., and Hwang, H.Y.: Spectroscopic evidence for competing reconstructions in polar multilayers LaAlO3/LaVO3/LaAlO3 . Phys. Rev. Lett. 102, 236401 (2009).
151. Masuno, A., Terashima, T., and Takano, M.: Epitaxial growth of perovskite-type LaVO3 thin films on various substrates by the PLD method. Solid State Ion. 172, 275278 (2004).
152. He, C., Sanders, T.D., Gray, M.T., Wong, F.J., Mehta, V.V., and Suzuki, Y.: Metal-insulator transitions in epitaxial LaVO3 and LaTiO3 films. Phys. Rev. B 86, 081401 (2012).
153. Ishiwara, H. and Jyokyu, K.: Formation of conductive SrVO3 films on Si substrates. Jpn. J. Appl. Phys. 30, L2059L2061 (1991).
154. Gu, M., Wolf, S.A., and Lu, J.: Two-dimensional Mott insulators in SrVO3 ultrathin films. Adv. Mater. Interfaces 1, 1300126 (2014).
155. Gu, M., Laverock, J., Chen, B., Smith, K.E., Wolf, S.A., and Lu, J.: Metal-insulator transition induced in CaVO3 thin films. J. Appl. Phys. 113, 133704 (2013).
156. Koinuma, H., Yoshimoto, M., Nagata, H., and Tsukahara, T.: Fabrication and anomalous conducting behavior of atomically regulated superlattices. Solid State Commun. 80, 913 (1991).
157. Tsao, J.Y.: Materials Fundamentals of Molecular Beam Epitaxy (Academic Press, San Diego, CA, 1993).
158. Jalan, B., Engel-Herbert, R., Wright, N.J., and Stemmer, S.: Growth of high-quality SrTiO3 films using a hybrid molecular beam epitaxy approach. J. Vac. Sci. Technol. A, Vac. Surf. Film 27, 461 (2009).
159. Engel-Herbert, R.: Molecular Beam Epitaxy From Research to Mass Production, Chapter 17 (Elsevier Science, Waltham, MA and Oxford, UK, 2013).
160. Moyer, J.A., Eaton, C., and Engel-Herbert, R.: Highly conductive SrVO3 as a bottom electrode for functional perovskite oxides. Adv. Mater. 25, 35783582 (2013).
161. Brahlek, M., Zhang, L., Eaton, C., Zhang, H-T., and Engel-Herbert, R.: Accessing a growth window for SrVO3 thin films. Appl. Phys. Lett. 107, 143108 (2015).
162. Eaton, C., Zhang, L., Brahlek, M., Lapano, J.M., and Engel-Herbert, R.: Self-regulated growth of CaVO3 by hybrid molecular beam epitaxy. (Under Rev.) J. Vac. Sci. Technol. A (2016).
163. Zhang, H-T., Dedon, L.R., Martin, L.W., and Engel-Herbert, R.: Self-regulated growth of LaVO3 thin films by hybrid molecular beam epitaxy. Appl. Phys. Lett. 106, 233102 (2015).
164. Zhang, H.-T., Brahlek, M., Ji, X., Lei, S., Lapano, J.M., Freeland, J.W., Gopalan, V., and Engel-Herbert, R.: High quality LaVO3 films for photovoltaic applications. ACS Appl. Mater. Interfaces (Under Rev).
165. Brahlek, M., Zhang, L., Zhang, H.-T., Lapano, J., Dedon, L.R., Martin, L.W., and Engel-Herbert, R.: Mapping growth windows in quaternary perovskite oxide systems by hybrid molecular beam epitaxy. Appl. Phys. Lett. 109, 101903 (2016).
166. Yoshimatsu, K., Horiba, K., Kumigashira, H., Yoshida, T., Fujimori, A., and Oshima, M.: Metallic quantum well states in artificial structures of strongly correlated oxide. Science 333, 319322 (2011).
167. Yoshimatsu, K., Okabe, T., Kumigashira, H., Okamoto, S., Aizaki, S., Fujimori, A., and Oshima, M.: Dimensional-crossover-driven metal-insulator transition in SrVO3 ultrathin films. Phys. Rev. Lett. 104, 14 (2010).
168. Zhong, Z., Wallerberger, M., Tomczak, J.M., Taranto, C., Parragh, N., Toschi, A., Sangiovanni, G., and Held, K.: Electronics with correlated oxides: SrVO3/SrTiO3 as a Mott transistor. Phys. Rev. Lett. 114, 246401 (2015).
169. Son, J., Moetakef, P., Jalan, B., Bierwagen, O., Wright, N. J., Engel-Herbert, R., and Stemmer, S.: Epitaxial SrTiO3 films with electron mobilities exceeding 30,000 cm2V−1s−1 . Nat. Mater. 9, 482484 (2010).
170. Yoshimatsu, K., Okabe, T., Kumigashira, H., Okamoto, S., Aizaki, S., Fujimori, A., and Oshima, M.: Dimensional-crossover-driven metal-insulator transition in SrVO3 ultrathin films. Phys. Rev. Lett. 104, 147601 (2010).
171. Ellmer, K.: Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 6, 808816 (2012).
172. Tahar, R.B.H., Ban, T., Ohya, Y., and Takahashi, Y.: Tin doped indium oxide thin films: electrical properties. J. Appl. Phys. 83, 26312645 (1998).
173. Miyasaka, S., Okimoto, Y., and Tokura, Y.: Anisotropy of Mott–Hubbard gap transitions due to spin and orbital ordering in LaVO3 and YVO3 . J. Phys. Soc. Japan 71, 20862089 (2002).
174. Sage, M., Blake, G., Marquina, C., and Palstra, T.: Competing orbital ordering in RVO3 compounds: high-resolution x-ray diffraction and thermal expansion. Phys. Rev. B 76, 195102 (2007).
175. Goodenough, J.B.: Theory of the role of covalence in the perovskite-type manganites [La,M(II)] MnO3 . Phys. Rev. 100, 564573 (1955).
176. Kanamori, J.: Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 8798 (1959).
177. Assmann, E., Blaha, P., Laskowski, R., Held, K., Okamoto, S., and Sangiovanni, G.: Oxide heterostructures for efficient solar cells. Phys. Rev. Lett. 110, 78701 (2013).
178. Wang, L., Li, Y., Bera, A., Ma, C., Jin, F., Yuan, K., Yin, W., David, A., Chen, W., Wu, W., Prellier, W., Wei, S., and Wu, T.: Device performance of the Mott insulator LaVO3 as a photovoltaic material. Phys. Rev. Appl. 3, 064015 (2015).
179. Mathew, X., Thompson, G.W., Singh, V.P., McClure, J.C., Velumani, S., Mathews, N.R., and Sebastian, P.J.: Development of CdTe thin films on flexible substrates—A review. Sol. Energy Mater. Sol. Cells 76, 293303 (2003).
180. Scafetta, M.D., Cordi, A.M., Rondinelli, J.M., and May, S.J.: Band structure and optical transitions in LaFeO3: theory and experiment. J. Phys. Condens. Matter 52, 505502 (2014).
181. Kachi, S., Kosuge, K., and Okinaka, H.: Metal-insulator transition in VnO2n−1 . J. Solid State Chem. 6, 258270 (1973).
182. Kawashima, K., Ueda, Y., Kosuge, K., and Kachi, S.: Crystal growth and some electric properties of V6O13 . J. Cryst. Growth 26, 321322 (1974).
183. Okinaka, H., Kosuge, K., Kachi, S., Nagasawa, K., Bando, Y., and Takada, T.: Electrical properties of V8O15 single crystal. Phys. Lett. A 33, 370371 (1970).
184. Shukla, N., Parihar, A., Freeman, E., Paik, H., Stone, G., Narayanan, V., Wen, H., Cai, Z., Gopalan, V., Engel-Herbert, R., Schlom, D.G., Raychowdhury, A., and Datta, S.: Synchronized charge oscillations in correlated electron systems. Sci. Rep. 4, 4964 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed