Skip to main content

Optical response of finite-thickness ultrathin plasmonic films

  • Igor V. Bondarev (a1), Hamze Mousavi (a1) and Vladimir M. Shalaev (a2)

We show that the optical response of ultrathin metallic films of finite lateral size and thickness can feature peculiar magneto-optical effects resulting from the spatial confinement of the electron motion. In particular, the frequency dependence of the magnetic permeability of the film exhibits a sharp resonance structure shifting to the red as the film aspect ratio increases. The films can also be negatively refractive in the IR frequency range under proper tuning. We show that these magneto-optical properties can be controlled by adjusting the film chemical composition, plasmonic material quality, the aspect ratio, and the surroundings of the film.

Corresponding author
Address all correspondence to Igor V. Bondarev at
Hide All
1.Huang, J.-S., Callegari, V., Geisler, P., Brüning, C., Kern, J., Prangsma, J.C., Wu, X., Feichtner, T., Ziegler, J., Weinmann, P., Kamp, M., Forchel, A., Biagioni, P., Sennhauser, U., and Hecht, B.: Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 1, 150 (2010).
2.Reddy, H., Guler, U., Kildishev, A.V., Boltasseva, A., and Shalaev, V.M.: Temperature-dependent optical properties of gold thin films. Opt. Mater. Express 6, 2776 (2016).
3.Shah, D., Reddy, H., Kinsey, N., Shalaev, V.M., and Boltasseva, A.: Optical properties of plasmonic ultrathin TiN films. Adv. Opt. Mater. 5, 1700065 (2017).
4.Shah, D., Catellani, A., Reddy, H., Kinsey, N., Shalaev, V., Boltasseva, A., and Calzolari, A.: Controlling the plasmonic properties of ultrathin TiN films at the atomic level. ACS Photonics 5, 2816 (2018).
5.Stauber, T., Santos, G.G., and Brey, L.: Plasmonics in topological insulators: spin-charge separation, the influence of the inversion layer, and phonon–plasmon coupling. ACS Photonics 4, 2978 (2017).
6.David, C. and Christensen, J.: Extraordinary optical transmission through nonlocal holey metal films. Appl. Phys. Lett. 110, 261110 (2017).
7.Polischuk, O.V., Melnikova, V.S., and Popov, V.V.: Giant cross-polarization conversion of terahertz radiation by plasmons in an active graphene metasurface. Appl. Phys. Lett. 109, 131101 (2016).
8.Rodrigo, D., Limaj, O., Janner, D., Etezadi, D., de Abajo, F.G., Pruneri, V., and Altug, H.: Mid-infrared plasmonic biosensing with graphene. Science 349, 165 (2015).
9.Yoxall, E., Schnell, M., Nikitin, A.Y., Txoperena, O., Woessner, A., Lundeberg, M.B., Casanova, F., Hueso, L.E., Koppens, F.H.L., and Hillenbrand, R.: Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photonics 9, 674 (2015).
10.Dai, S., Ma, Q., Liu, M.K., Andersen, T., Fei, Z., Goldflam, M.D., Wagner, M., Watanabe, K., Taniguchi, T., Thiemens, M., Keilmann, F., Janssen, G.C.A.M., Zhu, S.-E., Herrero, P.J., Fogler, M.M., and Basov, D.N.: Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682 (2015).
11.Manjavacas, A. and García de Abajo, F.J.: Tunable plasmons in atomically thin gold nanodisks. Nat. Commun. 5, 3548 (2014).
12.Koppens, F.H.L., Mueller, T., Avouris, Ph, Ferrari, A.C., Vitiello, M.S., and Polini, M.: Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780 (2014).
13.David, C. and García de Abajo, F.J.: Surface plasmon dependence on the electron density profile at metal surfaces. ACS Nano 8, 9558 (2014).
14.Kildishev, A.V., Boltasseva, A., and Shalaev, V.M.: Planar photonics with metasurfaces. Science 339, 1232009 (2013).
15.David, C., Mortensen, N.A., and Christensen, J.: Perfect imaging, epsilon-near zero phenomena and waveguiding in the scope of nonlocal effects. Sci. Rep. 3, 2526 (2013).
16.Bondarev, I.V. and Shalaev, V.M.: Universal features of the optical properties of ultrathin plasmonic films. Opt. Mater. Express 7, 3731 (2017).
17.Bondarev, I.V. and Shalaev, V.M.: Quantum electrodynamics of optical metasurfaces. In 2018 International Applied Computational Electromagnetics Society Symposium (ACES), 1–2.
18.Pines, D. and Bohm, D.: A collective description of electron interactions. II. Collective vs individual particle aspects of the interactions. Phys. Rev. 92, 609 (1952).
19.Ritchie, R.H.: Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957).
20.Keldysh, L.V.: Coulomb interaction in thin semiconductor and semimetal films. JETP Lett. 29, 658 (1980).
21.Rytova, N.S.: Screened potential of a point charge in a thin film. Mosc. Univ. Phys. Bull. 3, 30 (1967).
22.Davies, J.H.: Physics of Low-Dimensional Semiconductors (Cambridge University, New York, 1998).
23.Basov, D.N., Fogler, M.M., Lanzara, A., Wang, F., and Zhang, Y.: Colloquium: graphene spectroscopy. Rev. Mod. Phys. 86, 959 (2014).
24.Landau, L.D. and Lifshitz, E.M.: Electrodynamics of Continuous Media, 2nd ed. (Pergamon, NY, 1984).
25.Agranovich, V.M. and Gartstein, Yu. N.: Electrodynamics of metamaterials and the Landau-Lifshitz approach to the magnetic permeability. Metamaterials 3, 1 (2009).
26.Jackson, J.D.: Classical Electrodynamics (Wiley, New York, 1975).
27.Shalaev, V.M.: Optical negative-index metamaterials. Nat. Photonics 1, 41 (2007).
28.Depine, R.A. and Lakhtakia, A.A.: A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity. Microw. Opt. Technol. Lett. 41, 315 (2004).
29.Forcella, D., Prada, C., and Carminati, R.: Causality, nonlocality, and negative refraction. Phys. Rev. Lett. 118, 134301 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *