Skip to main content
×
×
Home

Screen-printed organic electrochemical transistors for metabolite sensing

  • Gaëtan Scheiblin (a1) (a2) (a3), Abdelkader Aliane (a1) (a2), Xenofon Strakosas (a3), Vincenzo F. Curto (a3), Romain Coppard (a1) (a4), Gilles Marchand (a1) (a2), Roísín M. Owens (a3), Pascal Mailley (a1) (a2) and George G. Malliaras (a3)...
Abstract

Screen-printed organic electrochemical transistors (OECTs) were tested as glucose and lactate sensors. The intrinsic amplification of the device allowed it to detect metabolites in low molecular range and validation tests were made on real human sweat. The development of an organically modified sol–gel solid electrolyte paves the way for all printed OECT-based biosensors.

Copyright
Corresponding author
Address all correspondence Roísín M. Owens, Pascal Mailley, George G. Malliaras atowens@emse.fr, malliaras@emse.fr, and pascal.mailley@cea.fr
References
Hide All
1.Phypers, B.: Lactate physiology in health and disease. Contin. Educ. Anaesth. Crit. Care Pain 6, 128132 (2006).
2.Maidan, R., and Heller, A.: Elimination of electrooxidizable interferant-produced currents in amperometric biosensors. Anal. Chem. 64, 28892896 (1992).
3.Kim, J., Valdes-Ramirez, G., Bandodkar, A.J., Jia, W., Martinez, A.G., Ramirez, J., Mercier, P., and Wang, J.: Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 139, 16321636 (2014).
4.Yao, H., Shum, A.J., Cowan, M., Lahdesmaki, I., and Parviz, B.A.: A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 26, 32903296 (2011).
5.Thomas, N., Lähdesmäki, I., and Parviz, B.A.: A contact lens with an integrated lactate sensor. Sens. Actuators B 162, 128134 (2012).
6.Khodagholy, D., Curto, V.F., Fraser, K.J., Gurfinkel, M., Byrne, R., Diamond, D., Malliaras, G.G., Benito-Lopez, F., and Owens, R.M.: Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. J. Mater. Chem. 22, 44404443 (2012).
7.Jia, W., Bandodkar, A.J., Valdes-Ramirez, G., Windmiller, J.R., Yang, Z., Ramirez, J., Chan, G., and Wang, J.: Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85, 65536560 (2013).
8.White, H.S.K., and Wrighton, G.P.: Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J. Am. Soc. 106, 53755377 (1984).
9.Strakosas, X., Bongo, M., and Owens, R.M.: The organic electrochemical transistor for biological applications. J. Appl. Polym. Sci. 41735, 114 (2015).
10.Bernards, D.A., Macaya, D.J., Nikolou, M., DeFranco, J.A., Takamatsu, S., and Malliaras, G.G.: Enzymatic sensing with organic electrochemical transistors. J. Mater. Chem. 18, 116120 (2008).
11.Shim, N.Y., Bernards, D.A., Macaya, D.J., Defranco, J.A., Nikolou, M., Owens, R.M., and Malliaras, G.G.: All-plastic electrochemical transistor for glucose sensing using a ferrocene mediator. Sensors (Basel) 9, 98969902 (2009).
12.Yang, S.Y., Defranco, J.A., Sylvester, Y.A., Gobert, T.J., Macaya, D.J., Owens, R.M., and Malliaras, G.G.: Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors. Lab Chip 9, 704708 (2009).
13.Tang, H., Yan, F., Lin, P., Xu, J., and Chan, H.L.W.: Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials. Adv. Func. Mater. 21, 22642272 (2011).
14.Elschner, A., Kirchmeyer, S., Lövenich, W., Merker, U., and Reuter, K.: PEDOT, Principles and Applications of an Intrinsically Conductive Polymer (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2011), pp. 113, 158.
15.Owens, R.M., and Malliaras, G.G.: Organic electronics at the interface with biology. MRS Bull. 35, 449456 (2010).
16.Khodagholy, D., Rivnay, J., Sessolo, M., Gurfinkel, M., Leleux, P., Jimison, L.H., Stavrinidou, E., Herve, T., Sanaur, S., Owens, R.M., and Malliaras, G.G.: High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133(1–6) (2013).
17.Rivnay, J., Leleux, P., Sessolo, M., Khodagholy, D., Herve, T., Fiocchi, M., and Malliaras, G.G.: Organic electrochemical transistors with maximum transconductance at zero gate bias. Adv. Mater. 25, 70107014 (2013).
18.Basiricò, L., Cosseddu, P., Scidà, A., Fraboni, B., Malliaras, G.G., and Bonfiglio, A.: Electrical characteristics of ink-jet printed, all-polymer electrochemical transistors. Org. Electron. 13, 244248 (2012).
19.Kaihovirta, N., Mäkelä, T., He, X., Wikman, C.-J., Wilén, C.-E., and Österbacka, R.: Printed all-polymer electrochemical transistors on patterned ion conducting membranes. Org. Electron. 11, 12071211 (2010).
20.Andersson Ersman, P., Nilsson, D., Kawahara, J., Gustafsson, G., and Berggren, M.: Fast-switching all-printed organic electrochemical transistors. Org. Electron. 14, 12761280 (2013).
21.David Nilsson, T.K., Svensson, P.-O., and Berggren, M.: An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper. Sens. Actuators B – Chem. 86, 193197 (2002).
22.Yang, S.Y., Cicoira, F., Byrne, R., Benito-Lopez, F., Diamond, D., Owens, R.M., and Malliaras, G.G.: Electrochemical transistors with ionic liquids for enzymatic sensing. Chem. Commun. (Camb.). 46, 79727974 (2010).
23.Tan, S.N., and Miao, Y.: Amperometric hydrogen peroxide biosensor with silica sol–gel/chitosan film as immobilization matrix. Anal. Chim. Acta 437, 8793 (2001).
24.Xu, J., Chen, X., and Dong, S.: Organically modified sol–gel/chitosan composite based glucose biosensor. Electroanalysis 15, 608612 (2003).
25.Yang, W., Zhou, H., and Sun, C.: Synthesis of ferrocene-branched chitosan derivatives: redox polysaccharides and their application to reagentless enzyme-based biosensors. Macromol. Rapid Commun. 28, 265270 (2007).
26.Bernards, D.A. and Malliaras, G.G.: Steady-state and transient behavior of organic electrochemical transistors. Adv. Func. Mater. 17, 35383544 (2007).
27.Harvey, C.J., LeBouf, R.F., and Stefaniak, A.B.: Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicol. In Vitro 24, 17901796 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
UNKNOWN
Supplementary materials

Scheiblin supplementary material
Scheiblin supplementary material 1

 Unknown (418 KB)
418 KB
WORD
Supplementary materials

Scheiblin supplementary material
Scheiblin supplementary material 2

 Word (83 KB)
83 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed