Skip to main content Accessibility help

Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics

  • S. Pedron (a1), H. Polishetty (a1), A.M. Pritchard (a1), B.P. Mahadik (a1), J.N. Sarkaria (a2) and B.A.C. Harley (a1) (a3)...


While preclinical models such as orthotopic tumors generated in mice from patient-derived specimens are widely used to predict sensitivity or therapeutic interventions for cancer, such xenografts can be slow, require extensive infrastructure, and can make in situ assessment difficult. Such concerns are heightened in highly aggressive cancers, such as glioblastoma (GBM), that display genetic diversity and short mean survival. Biomimetic biomaterial technologies offer an approach to create ex vivo models that reflect biophysical features of the tumor microenvironment (TME). We describe a microfluidic templating approach to generate spatially graded hydrogels containing patient-derived GBM cells to explore drug efficacy and resistance mechanisms.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics
      Available formats


Corresponding author

Address all correspondence to B.A.C. Harley at


Hide All
1.Louis, D.N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W.K., Ohgaki, H., Wiestler, O.D., Kleihues, P., and Ellison, D.W.: The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803 (2016).
2.Furnari, F.B., Fenton, T., Bachoo, R.M., Mukasa, A., Stommel, J.M., Stegh, A., Hahn, W.C., Ligon, K.L., Louis, D.N., Brennan, C., Chin, L., DePinho, R.A., and Cavenee, W.K.: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21, 2683 (2007).
3.Johnson, D.R. and O'Neill, B.P.: Glioblastoma survival in the United States before and during the temozolomide era. J. Neurooncol. 107, 359 (2012).
4.Charles, N.A., Holland, E.C., Gilbertson, R., Glass, R., and Kettenmann, H.: The brain tumor microenvironment. Glia 59, 1169 (2011).
5.Jackson, C., Ruzevick, J., Phallen, J., Belcaid, Z., and Lim, M.: Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin. Dev. Immunol. 2011, 20 (2011).
6.Stupp, R., Mason, W.P., van den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J., Belanger, K., Brandes, A.A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R.C., Ludwin, S.K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J.G., Eisenhauer, E., and Mirimanoff, R.O.: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987 (2005).
7.Okada, M., Saio, M., Kito, Y., Ohe, N., Yano, H., Yoshimura, S., Iwama, T., and Takami, T.: Tumor-associated macrophage/microglia infiltration in human gliomas is correlated with MCP-3, but not MCP-1. Int. J. Oncol. 34, 1621 (2009).
8.Lathia, J.D., Mack, S.C., Mulkearns-Hubert, E.E., Valentim, C.L., and Rich, J.N.: Cancer stem cells in glioblastoma. Genes Dev. 29, 1203 (2015).
9.Thaker, N.G. and Pollack, I.F.: Molecularly targeted therapies for malignant glioma: rationale for combinatorial strategies. Expert Rev. Neurother. 9, 1815 (2009).
10.Huang, T.T., Sarkaria, S.M., Cloughesy, T.F., and Mischel, P.S.: Targeted therapy for malignant glioma patients: lessons learned and the road ahead. Neurotherapeutics 6, 500 (2009).
11.Misra, S., Toole, B.P., and Ghatak, S.: Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. J. Biol. Chem. 281, 34936 (2006).
12.Rape, A., Ananthanarayanan, B., and Kumar, S.: Engineering strategies to mimic the glioblastoma microenvironment. Adv. Drug Delivery. Rev. 79–80, 172 (2014).
13.Roth, P. and Weller, M.: Challenges to targeting epidermal growth factor receptor in glioblastoma: escape mechanisms and combinatorial treatment strategies. Neuro Oncol. 16, viii14 (2014).
14.Taylor, T.E., Furnari, F.B., and Cavenee, W.K.: Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. Curr. Cancer Drug Targets 12, 197 (2012).
15.Schulte, A., Liffers, K., Kathagen, A., Riethdorf, S., Zapf, S., Merlo, A., Kolbe, K., Westphal, M., and Lamszus, K.: Erlotinib resistance in EGFR-amplified glioblastoma cells is associated with upregulation of EGFRvIII and PI3Kp110δ. Neuro Oncol. 15, 1289 (2013).
16.Slomiany, M.G., Dai, L., Bomar, P.A., Knackstedt, T.J., Kranc, D.A., Tolliver, L., Maria, B.L., and Toole, B.P.: Abrogating drug resistance in malignant peripheral nerve sheath tumors by disrupting hyaluronan-CD44 interactions with small hyaluronan oligosaccharides. Cancer Res. 69, 4992 (2009).
17.Pedron, S., Becka, E., and Harley, B.A.: Spatially gradated hydrogel platform as a 3D engineered tumor microenvironment. Adv. Mater. 27, 1567 (2015).
18.Heddleston, J.M., Hitomi, M., Venere, M., Flavahan, W.A., Yan, K., Kim, Y., Minhas, S., Rich, J.N., and Hjelmeland, A.B.: Glioma stem cell maintenance: the role of the microenvironment. Curr. Pharm. Des. 17, 2386 (2011).
19.Verhaak, R.G.W., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., Miller, C.R., Ding, L., Golub, T., Mesirov, J.P., Alexe, G., Lawrence, M., O'Kelly, M., Tamayo, P., Weir, B.A., Gabriel, S., Winckler, W., Gupta, S., Jakkula, L., Feiler, H.S., Hodgson, J.G., James, C.D., Sarkaria, J.N., Brennan, C., Kahn, A., Spellman, P.T., Wilson, R.K., Speed, T.P., Gray, J.W., Meyerson, M., Getz, G., Perou, C.M., Hayes, D.N., and Canc Genome Atlas Res, N.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98 (2010).
20.Westermark, B.: Glioblastoma—a moving target. Ups. J. Med. Sci. 117, 251 (2012).
21.Hambardzumyan, D., Cheng, Y.-K., Haeno, H., Holland, E.C., and Michor, F.: The probable cell of origin of NF1- and PDGF-driven glioblastomas. PLoS ONE 6, e24454 (2011).
22.Labussiere, M., Sanson, M., Idbaih, A., and Delattre, J.Y.: IDH1 gene mutations: a new paradigm in glioma prognosis and therapy? Oncologist 15, 196 (2010).
23.Rich, J.N., Hans, C., Jones, B., Iversen, E.S., McLendon, R.E., Rasheed, B.K., Dobra, A., Dressman, H.K., Bigner, D.D., Nevins, J.R., and West, M.: Gene expression profiling and genetic markers in glioblastoma survival. Cancer Res. 65, 4051 (2005).
24.Sarkaria, J.N., Yang, L., Grogan, P.T., Kitange, G.J., Carlson, B.L., Schroeder, M.A., Galanis, E., Giannini, C., Wu, W., Dinca, E.B., and James, C.D.: Identification of molecular characteristics correlated with glioblastoma sensitivity to EGFR kinase inhibition through use of an intracranial xenograft test panel. Mol. Cancer Ther. 6, 1167 (2007).
25.Sarkaria, J.N., Carlson, B.L., Schroeder, M.A., Grogan, P., Brown, P.D., Giannini, C., Ballman, K.V., Kitange, G.J., Guha, A., Pandita, A., and James, C.D.: Use of an orthotopic xenograft model for assessing the effect of epidermal growth factor receptor amplification on glioblastoma radiation response. Clin. Cancer Res. 12, 2264 (2006).
26.Giannini, C., Sarkaria, J.N., Saito, A., Uhm, J.H., Galanis, E., Carlson, B.L., Schroeder, M.A., and James, C.D.: Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro Oncol. 7, 164 (2005).
27.Pedron, S., Becka, E., and Harley, B.A.C.: Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid. Biomaterials 34, 7408 (2013).
28.Mahadik, B.P., Wheeler, T.D., Skertich, L.J., Kenis, P.J., and Harley, B.A.: Microfluidic generation of gradient hydrogels to modulate hematopoietic stem cell culture environment. Adv. Healthc. Mater. 3, 449 (2014).
29.Mahadik, B.P., Pedron Haba, S., Skertich, L.J., and Harley, B.A.C.: The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel. Biomaterials 67, 297 (2015).
30.Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55 (1983).
31.Duffy, G.P., McFadden, T.M., Byrne, E.M., Gill, S.L., Farrell, E., and O'Brien, F.J.: Towards in vitro vascularisation of collagen-GAG scaffolds. Eur. Cells Mater. 21, 15 (2011).
32.Livak, K.J. and Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25, 402 (2001).
33.Wiranowska, M.R. and Rojiani, M. V.: Extracellular matrix microenvironment in glioma progression, in Glioma—Exploring Its Biology and Practical Relevance, edited by Ghosh, A. (InTech, Rijeka, Croatia, 2011), p. 257.
34.Endersby, R. and Baker, S.J.: PTEN signaling in brain: neuropathology and tumorigenesis. Oncogene 27, 5416 (2008).
35.Perez, A., Neskey, D.M., Wen, J., Pereira, L., Reategui, E.P., Goodwin, W.J., Carraway, K.L., and Franzmann, E.J.: CD44 interacts with EGFR and promotes head and neck squamous cell carcinoma initiation and progression. Oral Oncol. 49, 306 (2013).
36.Cha, J., Kang, S.-G., and Kim, P.: Strategies of mesenchymal invasion of patient-derived brain tumors: microenvironmental adaptation. Sci. Rep. 6, 24912 (2016).
37.Toole, B.P.: Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer 4, 528 (2004).
38.Tsatas, D., Kanagasundaram, V., Kaye, A., and Novak, U.: EGF receptor modifies cellular responses to hyaluronan in glioblastoma cell lines. J. Clin. Neurosci. 9, 282 (2002).
39.Chen, J.-W., Pedron, S. and Harley, B.A.C.: The combined influence of hydrogel stiffness and matrix-bound hyaluronic acid content on glioblastoma invasion. Macromol. Biosci. 17, 1616 (2017).
40.Klank, R.L., Decker Grunke, S.A., Bangasser, B.L., Forster, C.L., Price, M.A., Odde, T.J., SantaCruz, K.S., Rosenfeld, S.S., Canoll, P., Turley, E.A., McCarthy, J.B., Ohlfest, J.R., and Odde, D.J.: Biphasic dependence of glioma survival and cell migration on CD44 expression level. Cell Rep. 18, 23.
41.Mendelsohn, J. and Baselga, J.: Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol. 21, 2787 (2003).
42.Akita, R.W. and Sliwkowski, M.X.: Preclinical studies with erlotinib (Tarceva). Semin. Oncol. 30, 15 (2003).
43.Wang, S.J. and Bourguignon, L.Y.W.: Role of hyaluronan-mediated CD44 signaling in head and neck squamous cell carcinoma progression and chemoresistance. Am. J. Pathol. 178, 956 (2011).
44.Holohan, C., Van Schaeybroeck, S., Longley, D.B., and Johnston, P.G.: Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714 (2013).
45.Ohashi, R., Takahashi, F., Cui, R., Yoshioka, M., Gu, T., Sasaki, S., Tominaga, S., Nishio, K., Tanabe, K.K., and Takahashi, K.: Interaction between CD44 and hyaluronate induces chemoresistance in non-small cell lung cancer cell. Cancer Lett. 252, 225 (2007).
Type Description Title
Supplementary materials

Pedron et al supplementary material 1
Pedron et al supplementary material

 PDF (209 KB)
209 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed