Skip to main content

Strong piezoelectricity in individual GaN nanowires

  • Majid Minary-Jolandan (a1), Rodrigo A. Bernal (a1) and Horacio D. Espinosa (a1)

GaN nanowires are promising building blocks for future nanoelectronics, optoelectronic devices, and nanogenerators. Here, we report on strong piezoelectricity in individual single-crystal GaN nanowires revealed by direct measurement of the piezoelectric constant using piezoresponse force microscopy. Our experimental results show that individual c-axis GaN nanowires, with a characteristic dimension as small as 65 nm, show a shear piezoelectric constant of d15 ~ 10 pm/V, which is several times that measured in bulk. The revealed strong piezoelectricity could open promising opportunities for application of GaN nanowires in nanowire-based sensors and generators for self-powered nanodevices.

Corresponding author
Address all correspondence to Horacio D. Espinosa at
Hide All
1.Yang P., Yan R., and Fardy M.: Semiconductor nanowire: what's next? Nano Lett. 10, 15291536 (2010).
2.Wang Z.L. and Song J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242246 (2006).
3.Yang R., Qin Y., Dai L., and Wang Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 3439 (2009).
4.Qi Y., Kim J., Nguyen T.D., Lisko B., Purohit P.K., and McAlpine M.C.: Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 13311336 (2011).
5.Agrawal R., Peng B., Gdoutos E.E., and Espinosa H.D.: Elasticity size effects in ZnO nanowires—a combined experimental-computational approach. Nano Lett. 8, 36683674 (2008).
6.Bernal R.A., Agrawal R., Peng B., Bertness K.A., Sanford N.A., Davydov A.V., and Espinosa H.D.: Effect of growth orientation and diameter on the elasticity of GaN Nanowires. A combined in situ TEM and atomistic modeling investigation. Nano Lett. 11, 548555 (2011).
7.Huang Y., Duan X., Cui Y., and Lieber C.M.: Gallium nitride nanowire nanodevices. Nano Lett. 2, 101104 (2002).
8.Zhong Z., Qian F., Wang D., and Lieber C.M.: Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343346 (2003).
9.Johnson J.C., Choi H.-J., Knutsen K.P., Schaller R.D., Yang P., and Saykally R.J.: Single gallium nitride nanowire lasers. Nat. Mater. 1, 106110 (2002).
10.Huang C.-T., Song J., Lee W.-F., Ding Y., Gao Z., Hao Y., Chen L.-J., and Wang Z.L.: GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 132(13), 47664771 (2010).
11.Xu X., Potie A., Songmuang R., Lee J., Bercu B., Baron T., Salem B., and Montes L.: An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: application to GaN nanowires. Nanotechnology 22, 105704 (2011).
12.Güthner P. and Dransfeld K.: Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett. 61, 1137 (1992).
13.Kolosov O., Gruverman A., Hatano J., Takahashi K., and Tokumoto H.: Nanoscale visualization and control of ferroelectric domains by atomic force microscopy. Phys. Rev. Lett. 74, 43094312 (1995).
14.Zhao M.-H., Wang Z.-L., and Mao S.X.: Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 4, 587590 (2004).
15.Wang J., Sandu C.S., Colla E., Wang Y., Ma W., Gysel R., Trodahl H.J., Setterb N., and Kuball M.: Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires. Appl. Phys. Lett. 90, 133107 (2007).
16.Yun W.S., Urban J.J., Gu Q., and Park H.: Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy. Nano Lett. 2, 447450 (2002).
17.Wang Z., Hu J., and Yua M.-F.: One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire. Appl. Phys. Lett. 89, 263119 (2006).
18.Minary-Jolandan M. and Yu M.-F.: Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone. ACS Nano 3, 18591863 (2009).
19.Rodriguez B.J., Gruverman A., Kingon A.I., and Nemanich R.J.: Piezoresponse force microscopy for piezoelectric measurements of III-nitride materials. J. Crystal Growth 246, 252258 (2002).
20.Agrawal R. and Espinosa H.D.: Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett. 11(2), 786790 (2011).
21.Bdikin I.K., Gracio J., Ayouchi R., Schwarz R., and Kholkin A.L.: Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method. Nanotechnology 21, 235703 (2010).
22.Bertness K.A., Roshko A., Mansfield L.M., Harvey T.E., and Sanford N.A.: Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy. J. Crystal Growth 310, 31543158 (2008).
23.Minary-Jolandan M. and Yu M.-F.: Nanoscale characterization of isolated individual type I collagen fibrils: Polarization and piezoelectricity. Nanotechnology 20, 085706 (2009).
24.Bernardini F. and Fiorentini V.: First-principles calculation of the piezoelectric tensor d of III–V nitrides. Appl. Phys. Lett. 80, 4145 (2002).
25.Muensit S., Goldys E.M., and Guy I.L.: Shear piezoelectric coefficients of gallium nitride and aluminum nitride. Appl. Phys. Lett. 75, 3965 (1999).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary Material

Minary-Jolandan Supplementary Material
Minary-Jolandan Supplementary Material

 Word (1.4 MB)
1.4 MB


Full text views

Total number of HTML views: 4
Total number of PDF views: 35 *
Loading metrics...

Abstract views

Total abstract views: 168 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st November 2017. This data will be updated every 24 hours.