Skip to main content Accessibility help

Transparent carbon nanotube electrodes for electric cell–substrate impedance sensing

  • Shokoufeh Teymouri (a1) (a2), Florin Loghin (a1), Marco Bobinger (a1), Zeno Guttenberg (a2) and Paolo Lugli (a3)...


Electric cell–substrate impedance sensing is widely used to study cell behavior such as adhesion, migration, and cell toxicity. However, a simultaneous optical imaging of cells is limited by inefficient transmission of visible light through the gold electrodes. To overcome this limitation, we fabricated carbon nanotube (CNT) electrodes with high electrical conductivity as well as optical transmittance. The impedimetric monitoring of cell proliferation and migration by gold and CNT electrodes were compared and analyzed. Taking advantage of the optical transparency of CNTs, we demonstrated a simultaneous electronic and optical monitoring of MCF7 cells, with acquisition of high-resolution images.


Corresponding author

Address all correspondence to Shokoufeh Teymouri at


Hide All
1.Giaever, I. and Keese, C.R.: Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture. IEEE Trans. Biomed. Eng. 33, 242247 (1986).
2.Keese, C.R., Wegener, J., Walker, S.R., and Giaever, I.: Electrical wound-healing assay for cells in vitro. Proc. Natl. Acad. Sci. USA 101, 15541559 (2004).
3.Ramuz, M., Hama, A., Huerta, M., Rivnay, J., Leleux, P., and Owens, R.M.: Combined optical and electronic sensing of epithelial cells using planar organic transistors. Adv. Mater. 26, 70837090 (2014).
4.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 5658 (1991).
5.Tîlmaciu, C.-M. and Morris, M.C.: Carbon nanotube biosensors. Front. Chem. 3, 59 (2015).
6.Abdolahad, M., Taghinejad, M., Taghinejad, H., Janmaleki, M., and Mohajerzadeh, S.: A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells. Lab. Chip 12, 11831190 (2012).
7.Zanganeh, S., Khodadadei, F., Tafti, S.R., and Abdolahad, M.: Folic acid functionalized vertically aligned carbon nanotube (FA-VACNT) electrodes for cancer sensing applications. J. Mater. Res. Technol. 32, 617625 (2016).
8.Liu, Y., Zhu, F., Dan, W., Fu, Y., and Liu, S.: Construction of carbon nanotube based nanoarchitectures for selective impedimetric detection of cancer cells in whole blood. Analyst 139, 50865092 (2014).
9.Andrade, C.A.S., Nascimento, J.M., Oliveira, I.S., De Oliveira, C.V.J., De Melo, C.P., Franco, O.L., and Oliveira, M.D.L.: Nanostructured sensor based on carbon nanotubes and clavanin A for bacterial detection. Colloids Surf. B Biointerfaces 135, 833839 (2015).
10.Chen, C., Jin, T., Wei, L., Li, Y., Liu, X., Wang, Y., Zhang, L., Liao, C., Hu, N., Song, C., and Zhang, Y.: High-work-function metal/carbon nanotube/low-work-function metal hybrid junction photovoltaic device. NPG Asia Mater. 7, e220 (2015).
11.Loghin, F., Colasanti, S., Weise, A., Falco, A., Abdelhalim, A., Lugli, P., and Abdellah, A.: Scalable spray deposition process for highly uniform and reproducible CNT-TFTs. Flexible Printed Electron. 1, 045002 (2016).
12.Chen, L.Y., Chen, Y.J., and Chang, C.S.: Electric current distribution of a multiwall carbon nanotube. AIP Adv. 6, 075216 (2016).
13.Tinkham, M.: Energy gap interpretation of experiments on infrared transmission through superconducting films. Phys. Rev. 104, 845846 (1956).
14.Falco, A., Cina, L., Scarpa, G., Lugli, P., and Abdellah, A.: Fully-sprayed and flexible organic photodiodes with transparent carbon nanotube electrodes. ACS Appl. Mater. Interfaces 6, 1059310601 (2014).
15.Fujigaya, T. and Nakashima, N.: Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci. Technol. Adv. Mater. 16, 024802 (2015).
16.Tenent, R.C., Barnes, T.M., Bergeson, J.D., Ferguson, A.J., To, B., Gedvilas, L.M., Heben, M.J., and Blackburn, J.L.: Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv. Mater. 21, 32103216 (2009).
17.Zhou, Y. and Azumi, R.: Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci. Technol. Adv. Mater. 17, 493516 (2016).
18.Vaisman, L., Wagner, H.D., and Marom, G.: The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci. 128, 3746 (2006).
19.Imaninezhad, M., Schober, J., Griggs, D., Ruminski, P., Kuljanishvili, I., and Zustiak, S.P.: Cell attachment and spreading on carbon nanotubes Is facilitated by integrin binding. Front. Bioeng. Biotechnol. 6, 129 (2018).
20.Lee, J.-R., Ryu, S., Kim, S., and Kim, B.-S.: Behaviors of stem cells on carbon nanotube. Biomater. Res. 19, 3 (2015).
21.Namgung, S., Baik, K.Y., Park, J., and Hong, S.: Controlling the growth and differentiation of human mesenchymal stem cells by the arrangement of individual carbon nanotubes. ACS Nano 5, 73837390 (2011).
22.Ren, J., Xu, Q., Chen, X., Li, W., Guo, K., Zhao, Y., Wang, Q., Zhang, Z., Peng, H., and Li, Y.-G.: Superaligned carbon nanotubes guide oriented cell growth and promote electrophysiological homogeneity for synthetic cardiac tissues. Adv. Mater. 29, 1702713 (2017).
23.Price, R.L., Ellison, K., Haberstroh, K.M., and Webster, T.J.: Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J. Biomed. Mater. Res. A 70, 129138 (2004).
24.Perepelytsina, O.M., Ugnivenko, A.P., Dobrydnev, A.V., Bakalinska, O.N., Marynin, A.I., and Sydorenko, M.V.: Influence of carbon nanotubes and its derivatives on tumor cells in vitro and biochemical parameters, cellular blood composition in vivo. Nanoscale Res. Lett. 13, 286 (2018).
25.Namgung, S., Kim, T., Baik, K.Y., Lee, M., Nam, J.M., and Hong, S.: Fibronectin-carbon-nanotube hybrid nanostructures for controlled cell growth. Small 7, 5661 (2011).
26.Rahman, G., Najaf, Z., Mehmood, A., Bilal, S., Shah, A.U.H.A., Mian, S.A., and Ali, G.: An overview of the recent progress in the synthesis and applications of carbon nanotubes. C 5, 3 (2019).
27.Warburg, E.: Polarization capacity of platinum. Ann. Phys. 6, 125135 (1901).
28.Wegener, J., Keese, C.R., and Giaever, I.: Electric cell–substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp. Cell Res. 259, 158166 (2000).
29.Aval, L.F., Ghoranneviss, M., and Pour, G.B.: High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes. Heliyon 4, e00862 (2018).
30.Stolwijk, J.A., Matrougui, K., Renken, C.W., and Trebak, M.: Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview, and fundamental considerations for stable and reproducible measurements. Pflugers Arch 467, 21932218 (2015).
Type Description Title
Supplementary materials

Teymouri et al. supplementary material
Figures S1-S6

 Word (2.4 MB)
2.4 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed