Skip to main content

Undercooling driven growth of Q-carbon, diamond, and graphite

  • Siddharth Gupta (a1), Ritesh Sachan (a1) (a2), Anagh Bhaumik (a1), Punam Pant (a1) and Jagdish Narayan (a1)...

We provide insights pertaining the dependence of undercooling in the formation of graphite, nanodiamonds, and Q-carbon nanocomposites by nanosecond laser melting of diamond-like carbon (DLC). The DLC films are melted rapidly in a super-undercooled state and subsequently quenched to room temperature. Substrates exhibiting different thermal properties—silicon and sapphire, are used to demonstrate that substrates with lower thermal conductivity trap heat flow, inducing larger undercooling, both experimentally and theoretically via finite element simulations. The increased undercooling facilitates the formation of Q-carbon. The Q-carbon is used as nucleation seeds for diamond growth via laser remelting and hot-filament chemical vapor deposition.

Corresponding author
Address all correspondence to Jagdish Narayan at
Hide All
1.Narayan, J., Godbole, V., and White, C.: Laser method for synthesis and processing of continuous diamond films on nondiamond substrates. Science 252, 416 (1991).
2.Narayan, J. and Bhaumik, A.: Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 118, 215303 (2015).
3.Gupta, S., Bhaumik, A., Sachan, R., and Narayan, J.: Structural Evolution of Q-Carbon and Nanodiamonds. JOM 70, 450 (2018).
4.Heremans, J., Olk, C., Eesley, G., Steinbeck, J., and Dresselhaus, G.: Observation of metallic conductivity in liquid carbon. Phys. Rev. Lett. 60, 452 (1988).
5.Narayan, J., and Bhaumik, A.: Q-carbon discovery and formation of single-crystal diamond nano-and microneedles and thin films. Mater. Res. Lett. 4, 118 (2016).
6.Narayan, J. and Bhaumik, A.: Research update: direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air. Appl. Phys. Lett. Mater. 3, 100702 (2015).
7.Bhaumik, A., Sachan, R., Gupta, S., and Narayan, J.: Discovery of high-temperature superconductivity (T c = 55 K) in B-Doped Q-Carbon. ACS Nano 11, 11915 (2017).
8.Narayan, J., Gupta, S., Bhaumik, A., Sachan, R., Cellini, F., and Reido, E.: Q-carbon is harder than diamond. MRS Comm., 1 (2018). doi: 10.1557/mrc.2018.35.
9.Gupta, S., Sachan, R., Bhaumik, A., and Narayan, J.: Superhard Q-carbon nanocomposites J. Appl. Phys. (2018) under review.
10.Bhaumik, A., Nori, S., Sachan, R., Gupta, S., Kumar, D., Majumdar, A.K., and Narayan, J.: Room-temperature ferromagnetism and extraordinary hall effect in nanostructured Q-carbon: implications for potential spintronic devices. ACS Appl. Nano Mater. 1, 807 (2018). doi: 10.1021/acsanm.7b00253.
11.Bhaumik, A., Sachan, R., and Narayan, J.: High-temperature superconductivity in boron-doped Q-carbon. ACS Nano 11, 11915 (2017). doi: 10.1021/acsnano.7b06888.
12.Bhaumik, A., Sachan, R., and Narayan, J.: A novel high-temperature carbon-based superconductor: B-doped Q-carbon. J. Appl. Phys. 122, 045301 (2017).
13.Narayan, J. and Bhaumik, A.: Novel synthesis and properties of pure and NV-doped nanodiamonds and other nanostructures. Mater. Res. Lett. 5, 242 (2016).
14.Kumomi, H.: Location control of crystal grains in excimer laser crystallization of silicon thin films. Appl. Phys. Lett. 83, 434 (2003).
15.Shamsa, M., Liu, W., Balandin, A., Casiraghi, C., Milne, W., and Ferrari, A.: Thermal conductivity of diamond-like carbon films. Appl. Phys. Lett. 89, 161921 (2006).
16.Steinbeck, J., Dresselhaus, G., and Dresselhaus, M.: The properties of liquid carbon. Int. J. Therm. 11, 789 (1990).
17.Ho, C.Y., Powell, R.W., and Liley, P.E.: Thermal conductivity of the elements: a comprehensive review, (NATIONAL STANDARD REFERENCE DATA SYSTEM1974).
18.Sachan, R., Yadavali, S., Shirato, N., Krishna, H., Ramos, V., Duscher, G., Pennycook, S.J., Gangopadhyay, A., Garcia, H., and Kalyanaraman, R.: Self-organized bimetallic ag–co nanoparticles with tunable localized surface plasmons showing high environmental stability and sensitivity. Nanotechnology 23, 275604 (2012).
19.Sachan, R., Ramos, V., Malasi, A., Yadavali, S., Bartley, B., Garcia, H., Duscher, G., and Kalyanaraman, R.: Oxidation-resistant silver nanostructures for ultrastable plasmonic applications. Adv. Mater. 25, 2045 (2013).
20.Sachan, R., Malasi, A., Ge, J., Yadavali, S., Krishna, H., Gangopadhyay, A., Garcia, H., Duscher, G., and Kalyanaraman, R.: Ferroplasmons: intense localized surface plasmons in metal-ferromagnetic nanoparticles. ACS Nano 8, 9790 (2014).
21.Trice, J., Thomas, D., Favazza, C., Sureshkumar, R., and Kalyanaraman, R.: Pulsed-laser-induced dewetting in nanoscopic metal films: theory and experiments. Phys. Rev. B 75, 235439 (2007).
22.Bhaumik, A., and Narayan, J.: Wafer scale integration of reduced graphene oxide by novel laser processing at room temperature in air. J. Appl. Mater. 10, 105304 (2016).
23.Bhaumik, A., and Narayan, J.: Synthesis and characterization of quenched and crystalline phases: Q-carbon, Q-BN, diamond and phase-pure c-BN. JOM 70, 456 (2018).
24.Narayan, J.: Dislocations, twins, and grain boundaries in CVD diamond thin films: atomic structure and properties. J. Mater. Res. 5, 2414 (1990).
25.Jackson, K.: Crystal Growth and Phase Formation. In Surface Modification and Alloying, edited by Poate, J.M., Foti, G. and Jacobson, D.C. (Springer, Boston, MA, 1983) p. 51.
26.Narayan, J.: Interface structures during solid-phase-epitaxial growth in ion implanted semiconductors and a crystallization model. J. Appl. Phys. 53, 8607 (1982).
27.Spaepen, F., Turnbull, D., Poate, J., and Mayer, J.: Laser annealing of semiconductors. In Laser Annealing of Semiconductors, edited by Poate, J.M. and Mayor, J.W. (Academic, New York, 1982), p. 15.
28.Cullis, A., Chew, N., Webber, H., and Smith, D.J.: Orientation dependence of high speed silicon crystal growth from the melt. J. Crys. Grow. 68, 624 (1984).
29.Singh, R.K. and Narayan, J.: A novel method for simulating laser-solid interactions in semiconductors and layered structures. Mater. Sci. Engg.: B 3, 217 (1989).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary materials

Gupta et al. supplementary material 1
Gupta et al. supplementary material

 Word (151 KB)
151 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed