Skip to main content

Energy availability and energy sources as determinants of societal development in a long-term perspective

  • Marina Fischer-Kowalski (a1) and Anke Schaffartzik (a1)

The dominant energy sources used by human societies and the transitions from one energy source to another have fundamental implications for societal development. A future energy transition is pending but it remains unclear what its socioeconomic corollaries will be.

The history of the dominant energy sources used by human societies and their implications for societal development are traced in this review. “Passive solar energy utilization” in the hunting and gathering mode requires mobility of societies following the biomass that is their sole energy input. Fertility is constrained both by the available nutrition and by the need to migrate: population density is low. The agrarian mode relies on “active solar energy utilization”. Solar energy is harnessed through cultivated crops providing energy to humans. This mode requires a sedentary way of life and allows for much higher population density; progress in raising yields is achieved by additional labor-inputs and drives population growth. The industrial mode relies largely on fossil energy carriers supplying human societies with an amount of energy never accessible before, and with new materials. It relieves human societies of their dependence on land, fosters urban growth, and decreases fertility. At the same time, the industrial mode is based on a dominant energy source that will not be available indefinitely and that is associated with severe impacts on the environment. A future energy transition seems unavoidable and historical evidence suggests that it will be associated with fundamental socioeconomic change.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Energy availability and energy sources as determinants of societal development in a long-term perspective
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Energy availability and energy sources as determinants of societal development in a long-term perspective
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Energy availability and energy sources as determinants of societal development in a long-term perspective
      Available formats
Corresponding author
*Address all correspondence to Marina Fischer-Kowalski at
Hide All

Current address: Klagenfurt University

Hide All
1. McKinnon, AM.: Energy and society: Herbert Spencer’s “energetic sociology” of social evolution and beyond. J. Classical Sociol. 10, 439455 (2010). doi: 10.1177/1468795X10385184.
2. Spencer, H.: First Principles. A System of Synthetic Philosophy (Williams & Norgate, London, 1862).
3. Morgan, L.H.: Ancient Society: Or, Researches in the Lines of Human Progress from Savagery, Through Barbarism to Civilization (H. Holt and Co., New York, 1877).
4. White, L.A.: Energy and the evolution of culture. Am. Anthropol. 45, 335356 (1943).
5. Steward, J.H.: Theory of Culture Change: The Methodology of Multilinear Evolution (University of Illinois Press, Urbana, 1955).
6. Cottrell, F.: Energy & Society: The Relation Between Energy, Social Change, and Economic Development (AuthorHouse, Bloomington, 1955).
7. Smil, V.: General Energetics: Energy in the Biosphere and Civilization (Wiley & Sons, Oxford, UK, 1991).
8. Smil, V.: Energy in World History (Essays in World History) (Westview Press, Boulder, CO, 1994).
9. Smil, V.: Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production (MIT Press, Cambridge, USA, 2001).
10. Smil, V.: Energy at the Crossroads: Global Perspectives and Uncertainties (MIT Press, Cambridge, MA, 2005).
11. Smil, V.: Energy in Nature and Society: General Energetics of Complex Systems (MIT Press, Cambridge, MA, 2008).
12. Ayres, R.U. and Warr, B.: The Economic Growth Engine: How Energy and Work Drive Material Prosperity (Edward Elgar Publishing, Northampton, MA, 2010).
13. Smith, A.: An Inquiry into the Nature and Causes of the Wealth of Nations. (A&C Black Publishers, London, 1863).
14. Ricardo, D.: On the Principles of Political Economy and Taxation, 3rd ed. (John Murray, London, 1817).
15. Marx, K.: Capital, Vol. 1 (Penguin, London, 1867).
16. Cobb, C.W. and Douglas, P.H.: A theory of production. Am. Econ. Rev. 18, 139165 (1928).
17. Solow, R.M.: A contribution to the theory of economic growth. Q. J. Econ. 70, 6594 (1956). doi: 10.2307/1884513.
18. Cleveland, C.J., Costanza, R., Hall, C.A.S., and Kaufmann, R.: Energy and the U.S. economy: A biophysical perspective. Science 225, 890897 (1984). doi: 10.1126/science.225.4665.890.
19. Cleveland, C.J.: Natural resource scarcity and economic growth revisited: Economic and biophysical perspectives. In Ecological Economics: The Science and Management of Sustainability, Costanza, R. ed.; Columbia University Press: New York, 1992; pp. 289317.
20. Ayres, R.U. and Warr, B.: Accounting for growth: The role of physical work. Struct. Change Econ. Dynam. 16, 181209 (2005). doi: 10.1016/j.strueco.2003.10.003.
21. Hall, C.A.S. and Klitgaard, K.A.: Energy and the Wealth of Nations: Understanding the Biophysical Economy (Springer Science & Business Media, Dordrecht, Netherlands, 2011).
22. Krausmann, F., Gingrich, S., Eisenmenger, N., Erb, K-H., Haberl, H., and Fischer-Kowalski, M. Growth in global materials use, GDP and population during the 20th century. Ecol. Econ. 68, 26962705 (2009). doi: 10.1016/j.ecolecon.2009.05.007.
23. Schaffartzik, A., Mayer, A., Gingrich, S., Eisenmenger, N., Loy, C., and Krausmann, F.: The global metabolic transition: Regional patterns and trends of global material flows, 1950–2010. Global Environ. Change 26, 8797 (2014). doi: 10.1016/j.gloenvcha.2014.03.013.
24. Leach, G.: The energy transition. Energy Policy 20, 116123 (1992). doi: 10.1016/0301-4215(92)90105-B.
25. Hashimoto, S., Fischer-Kowalski, M., Suh, S., and Bai, X.: Greening growing giants. J. Ind. Ecol. 16, 459466 (2012).
26. Pachauri, S. and Jiang, L.: The household energy transition in India and China. Energ. Pol. 36, 40224035 (2008). doi: 10.1016/j.enpol.2008.06.016.
27. Haberl, H., Fischer-Kowalski, M., Krausmann, F., Weisz, H., and Winiwarter, V.: Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Pol. 21, 199213 (2004). doi: 10.1016/j.landusepol.2003.10.013.
28. Pallua, I.: Historische Energietransitionen im Ländervergleich. Energienutzung, Bevölkerung, Wirtschaftliche Entwicklung (Institute of Social Ecology, Vienna, 2013).
29. Warde, P.: The first industrial revolution. In Power to the People: Energy in Europe over the Last Five Centuries, Kander, A., Malanima, P., and Warde, P. eds.; Princeton University Press: Princeton, 2014; pp. 129248.
30. Gerding, M.A.W.: Canals and energy: The relationship between canals and the extraction of peat in the Netherlands 1500-1900. Peatlands International 2, 3237 (2010).
31. Sieferle, R.P., Krausmann, F., Schandl, H., and Winiwarter, V.: Das Ende der Fläche: Zum gesellschaftlichen Stoffwechsel der Industrialisierung (Böhlau Verlag, Cologne, 2006).
32. Warde, P.: Energy Consumption in England and Wales, 1560–2004 (Consiglio Nazionale della Ricerche, Naples, 2007).
33. Sieferle, R.P.: The Subterranean Forest: Energy Systems and the Industrial Revolution (The White Horse Press, Cambridge, USA, 2001).
34. Krausmann, F. and Fischer-Kowalski, M.: Global socio-metabolic transitions. In Long Term Socio-Ecological Research, Singh, S.J., Haberl, H., Chertow, M., Mirtl, M., and Schmid, M. eds.; Springer: Dordrecht, Netherlands, 2013; pp. 339365.
35. Pomeranz, K.: The Great Divergence: China, Europe, and the Making of the Modern World Economy (Princeton University Press, Princeton, 2009).
36. Fischer-Kowalski, M. and Haberl, H.: Socioecological Transitions and Global Change: Trajectories of Social Metabolism and Land Use (Edward Elgar Publishing, Cheltenham, UK; Northampton, MA, 2007).
37. Hubbert, M.K.: Energy Resources: A Report to the Committee on Natural Resources. National Academy of Sciences, National Research Council, Washington, D.C., 1962.
38. Campbell, C.J. and Laherrère, J.H.: The end of cheap oil. Sci. Am. 278, 6065 (1998).
39. Murphy, D.J.: Fossil fuels: Peak oil is affecting the economy already. Nature 483, 541 (2012). doi: 10.1038/483541a.
40. GEA: Global Energy Assessment: Toward a Sustainable Future (IIASA and Cambridge University Press, Laxenburg and Cambridge, 2012).
41. McJeon, H., Edmonds, J., Bauer, N., Clarke, L., Fisher, B., Flannery, B.P., Hilaire, J., Krey, V., Marangoni, G., Mi, R., Riahi, K., Rogner, H., and Tavoni, M.: Limited impact on decadal-scale climate change from increased use of natural gas. Nature 514, 482485 (2014). doi: 10.1038/nature13837.
42. Meng, Q.Y. and Bentley, R.W.: Global oil peaking: Responding to the case for “abundant supplies of oil”. Energy 33, 11791184 (2008). doi: 10.1016/
43. Jackson, P.M. and Smith, L.K.: Exploring the undulating plateau: The future of global oil supply. Philos. Trans. R. Soc., A 372, 20120491 (2014). doi: 10.1098/rsta.2012.0491.
44. Meinshausen, M., Meinshausen, N., Hare, W., Raper, SCB., Frieler, K., Knutti, R., Frame, D.J., and Allen, M.R.: Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 11581162 (2009). doi: 10.1038/nature08017.
45. Stocker, T.F., Qin, D., Plattner, G-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M.: Climate Change 2013, The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change (IPCC) (Cambridge University Press, Cambridge, UK; New York, USA, 2013).
46. Schellnhuber, H.J., Cramer, W.P., Nakicenovic, N., Wigley, T., and Yohe, G.: Avoiding Dangerous Climate Change (Cambridge University Press, Cambridge, USA, 2006).
47. Sieferle, R.P.: Rückblick auf die Natur. Eine Geschichte des Menschen und seiner Umwelt (Luchterhand, Munich, 1997).
48. Sieferle, R.P.: Sustainability in a world history perspective. In Exploitation and Overexploitation in Societies Past and Present, Benzig, B. ed.; LIT Publishing House: Münster, 2003; pp. 123142.
49. Fischer-Kowalski, M., Krausmann, F., and Pallua, I.: A sociometabolic reading of the Anthropocene: Modes of subsistence, population size and human impact on earth. The Anthropocene Review 1, 833 (2014). doi: 10.1177/2053019613518033.
50. Wrangham, R.: Catching Fire: How Cooking Made Us Human (Basic Books, New York, 2009).
51. Vitousek, P.M., Ehrlich, P.R., Ehrlich, A.H., and Matson, P.A.: Human appropriation of the products of photosynthesis. BioScience 36, 368373 (1986). doi: 10.2307/1310258.
52. Malanima, P.: Pre-industrial economies. In Power to the People: Energy in Europe over the Last Five Centuries, Kander, A., Malanima, P., and Warde, P. eds.; Princeton University Press: Princeton, 2014; pp. 35128.
53. Goudsblom, J.: Fire and Civilization (Penguin Books, London, 1994).
54. Gill, J.L., Williams, J.W., Jackson, S.T., Lininger, K.B., and Robinson, G.S.: Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 11001103 (2009). doi: 10.1126/science.1179504.
55. Rule, S., Brook, B.W., Haberle, S.G., Turney, C.S.M., Kershaw, A.P., and Johnson, C.N.: The aftermath of megafaunal extinction: Ecosystem transformation in Pleistocene Australia. Science 335, 14831486 (2012). doi: 10.1126/science.1214261.
56. Ellison, P.T.: Energetics, reproductive ecology, and human evolution. PaleoAnthropology 2008, 172200 (2008).
57. Ammerman, A.J. and Cavalli-Sforza, L.L.: The Neolithic Transition and the Genetics of Populations in Europe (Princeton University Press, Princeton, 1984).
58. Lee, R.B.: Lactation ovulation infanticide and womens work: A study of hunter-gatherer population regulation. In Biosocial Mechanisms of Population Regulation, Cohen, M.N., Malpass, R.S., and Klein, H.G. eds.; Yale University Press: New Haven, 1980; pp. 321348.
59. Sahlins, M.D.: Stone Age Economics (Transaction Publishers, Hawthorne, 1972).
60. Singh, S.J., Grünbühel, C.M., Schandl, H., and Schulz, N.: Social metabolism and labour in a local context: Changing environmental relations on Trinket Island. Popul. Environ. 23, 71104 (2001). doi: 10.1023/A:1017564309651.
61. Gignoux, C.R., Henn, B.M., and Mountain, J.L.: Rapid, global demographic expansions after the origins of agriculture. Proc. Natl. Acad. Sci. U. S. A. 108, 60446049 (2011). doi: 10.1073/pnas.0914274108.
62. Flannery, T.: So varied in detail—So similar in outline. In Limited Wants, Unlimited Means: A Reader on Hunter-Gatherer Economics and the Environment, Gowdy, J. ed.; Island Press: Washington, D.C., 1997; pp. 237254.
63. Crosby, A.W.: Ecological Imperialism: The Biological Expansion of Europe, 900–1900 (Cambridge University Press, Cambridge, USA, 1986).
64. Diamond, J.: Collapse: How Societies Choose to Fail or Succeed (Viking: New York, 2005).
65. Tainter, J. The Collapse of Complex Societies (Cambridge University Press, Cambridge, USA, 1988).
66. Boserup, E.: Population and Technological Change: A Study of Long-Term Trends (University of Chicago Press, Chicago, 1981).
67. Cussó, X., Garrabou, R., and Tello, E.: Social metabolism in an agrarian region of Catalonia (Spain) in 1860–1870: Flows, energy balance and land use. Ecol. Econ. 58, 4965 (2006). doi: 10.1016/j.ecolecon.2005.05.026.
68. Krausmann, F.: Milk, manure, and muscle power. Livestock and the transformation of preindustrial agriculture in Central Europe. Hum. Ecol. 32, 735772 (2004). doi: 10.1007/s10745-004-6834-y.
69. Coughenour, M.B., Ellis, J.E., Swift, D.M., Coppock, D.L., Galvin, K., McCabe, J.T., and Hart, T.C.: Energy extraction and use in a nomadic pastoral ecosystem. Science 230, 619625 (1985). doi: 10.1126/science.230.4726.619.
70. Krausmann, F., Schandl, H., and Sieferle, R.P.: Socio-ecological regime transitions in Austria and the United Kingdom. Ecol. Econ. 65, 187201 (2008). doi: 10.1016/j.ecolecon.2007.06.009.
71. Fischer-Kowalski, M., Krausmann, F., and Smetschka, B.: Modelling transport as a key constraint to urbanisation in pre-industrial societies. In Long Term Socio-ecological Research, Singh, S.J., Haberl, H., Chertow, M., Mirtl, M., and Schmid, M. eds.; Springer: Dordrecht, Netherlands, 2013; pp. 77102.
72. Boserup, E.: The Conditions of Agricultural Growth: The Economics of Agrarian Change under Population Pressure (Transaction Publishers, New Brunswick, 1965).
73. Clark, C. and Haswell, M.: The Economics of Subsistence Agriculture, 3rd ed. (McMillan, London, 1967).
74. Fischer-Kowalski, M., Reenberg, A., Schaffartzik, A., and Mayer, A.: Ester Boserup’s Legacy on Sustainability: Orientations for Contemporary Research (Springer, Dordrecht, Netherlands, 2014).
75. Oesterdiekhoff, G.W., Sieferle, R.P., and Breuninger, H.: Familie, Wirtschaft und Gesellschaft in Europa: die historische Entwicklung von Familie und Ehe im Kulturvergleich (Breuninger Stiftung, Stuttgart, 2002).
76. Grigg, D.: The Transformation of Agriculture in the West (Blackwell, Oxford, 1992).
77. Gerhold, D.: Packhorses and wheeled vehicles in England, 1550-1800. J. Transport Hist. 14, 126 (1993).
78. Grübler, A.: The Rise and Fall of Infrastructures: Dynamics of Evolution and Technological Change in Transport (Physica Verlag, Heidelberg, 1990).
79. Goldewijk, K.K., Beusen, A., and Janssen, P.: Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. Holocene 20, 565573 (2010). doi: 10.1177/0959683609356587.
80. Livi-Bacci, M.: A Concise History of World Population (John Wiley & Sons, Hoboken, 2012).
81. Centre for Global Economic History: The Clio-Infra Database on Urban Settlement Sizes: 1500–2000 (Utrecht University, Utrecht, 2014).
82. Allen, R.C.: Backward into the future: The shift to coal and implications for the next energy transition. Energy Policy 50, 1723 (2012). doi: 10.1016/j.enpol.2012.03.020.
83. Mumford, L.: Technics and Civilization (Harcourt, Brace and Company, New York, 1934).
84. Kander, A.: The second and third industrial revolutions. In Power to the People: Energy in Europe over the Last Five Centuries, Kander, A., Malanima, P., and Warde, P. eds.; Princeton University Press: Princeton, 2014; pp. 249386.
85. Grübler, A.: Technology and Global Change (Cambridge University Press, Cambridge, 2003).
86. Cunfer, G.: On the Great Plains: Agriculture and Environment (Texas A&M University Press, College Station, 2005).
87. McNeill, J.R.: Something New under the Sun: An Environmental History of the Twentieth-Century World (The Global Century Series) (W.W. Norton & Company, New York, 2001).
88. von Gottl-Ottlilienfeld, F. (1924): Fordismus – Über Industrie und technische Vernunft (Fischer, Jena, 1924).
89. Leaf, M.J.: Green revolution. In Encyclopedia of World Environmental History, Krech, S. III, McNeill, J.R., and Merchant, C. eds.; Routledge: New York, 2004; pp. 615619.
90. Pfister, C.: The “1950s syndrome” and the transition from a slow-going to a rapid loss of global sustainability. In The Turning Points of Environmental History, Uekoetter, F. eds ; University of Pittsburgh Press: Pittsburgh, 2010; pp. 90118.
91. UNEP: Decoupling Resource Use and Environmental Impacts from Economic Growth. International Resource Panel (United Nations Environment Programme, Nairobi, 2011).
92. Lange, H. and Meier, L.: The New Middle Classes: Globalizing Lifestyles, Consumerism and Environmental Concern (Springer Science & Business Media, Dordrecht, Netherlands, 2009).
93. Lutz, W., Sanderson, W.C., and Scherbov, S.: The End of World Population Growth in the 21st Century: New Challenges for Human Capital Formation and Sustainable Development (Earthscan, Sterling, 2004).
94. FAO: FAOSTAT Database (Food and Agriculture Organization of the United Nations (FAO), Rome, 2014).
95. Parikh, J. and Shukla, V.: Urbanization, energy use and greenhouse effects in economic development: Results from a cross-national study of developing countries. Global Environ. Change 5, 87103 (1995). doi: 10.1016/0959-3780(95)00015-G.
96. Pachauri, S. and Spreng, D.: Direct and indirect energy requirements of households in India. Energy Policy 30, 511523 (2002). doi: 10.1016/S0301-4215(01)00119-7.
97. York, R.: Demographic trends and energy consumption in European Union Nations, 1960–2025. Soc. Sci. Res. 36, 855872 (2007). doi: 10.1016/j.ssresearch.2006.06.007.
98. Meadows, D.H., Meadows, D.H., Randers, J., and Behrens, W.W. III: The Limits to Growth: A Report to the Club of Rome (1972). Universe Books, New York, 1972).
99. Wiedenhofer, D., Rovenskaya, E., Haas, W., Krausmann, F., and Fischer-Kowalski, M.: Is there a 1970s syndrome? Analyzing structural breaks in the metabolism of industrial economies. Energy Procedia 40, 182191 (2013). doi: 10.1016/j.egypro.2013.08.022.
100. Peters, G.P., Minx, J.C., Weber, C.L., and Edenhofer, O.: Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl. Acad. Sci. U. S. A. 108, 89038908 (2011). doi: 10.1073/pnas.1006388108.
101. Wiedmann, T.O., Schandl, H., Lenzen, M., Moran, D., Suh, S., West, J., and Kanemoto, K. The material footprint of nations. Proc. Natl. Acad. Sci. U. S. A. 201220362 (2013). doi: 10.1073/pnas.1220362110.
102. FAO: Livestock’s long shadow: Environmental issues and options (Food and Agriculture Organization of the United Nations (FAO), Rome, 2006).
103. Vörösmarty, C.J., Green, P., Salisbury, J., and Lammers, R.B.: Global water resources: Vulnerability from climate change and population growth. Science 289, 284288 (2000). doi: 10.1126/science.289.5477.284.
104. Alcamo, J., Flörke, M., and Märker, M.: Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol. Sci. J. 52, 247275 (2007). doi: 10.1623/hysj.52.2.247.
105. Milly, P.C.D., Dunne, K.A., and Vecchia, A.V.: Global pattern of trends in streamflow and water availability in a changing climate. Nature 438, 347350 (2005). doi: 10.1038/nature04312.
106. Mudd, G.M.: The environmental sustainability of mining in Australia: Key mega-trends and looming constraints. Resour. Policy 35, 98115 (2010). doi: 10.1016/j.resourpol.2009.12.001.
107. McKinsey Global Institute: Resource Revolution: Tracking Global Commodity Markets. Trends Survey 2013 (McKinsey Global Institute, New York, 2013).
108. Lauber, V.: Political economy of renewable energy. In International Encyclopedia of the Social and Behavioral Sciences, 2nd edition; Elsevier: Amsterdam, 2015; pp. 367373.
109. Berndes, G., Hoogwijk, M., and van den Broek, R.: The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass Bioenergy 25, 128 (2003). doi: 10.1016/S0961-9534(02)00185-X.
110. Battjes, J.J.: Global Options for Biofuels from Plantations according to IMAGE Simulations (Rijksuniversiteit Groningen; Interfacultaire Vakgroep Energie en Milieukunde, Netherlands; Groningen, 1994).
111. Fischer, G. and Schrattenholzer, L.: Global bioenergy potentials through 2050. Biomass Bioenergy 20, 151159 (2001). doi: 10.1016/S0961-9534(00)00074-X.
112. Smeets, E.M.W., Faaij, A.P.C., Lewandowski, I.M., and Turkenburg, W.C.: A bottom-up assessment and review of global bio-energy potentials to 2050. Prog. Energy Combust. Sci. 33, 56106 (2007). doi: 10.1016/j.pecs.2006.08.001.
113. Lambin, E.F. and Meyfroidt, P.: Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. U. S. A. 108, 34653472 (2011). doi: 10.1073/pnas.1100480108.
114. Haberl, H., Beringer, T., Bhattacharya, S.C., Erb, K-H., and Hoogwijk, M.: The global technical potential of bio-energy in 2050 considering sustainability constraints. Curr. Opin. Environ. Sustain. 2, 394403 (2010).
115. Haberl, H., Erb, K-H., Krausmann, F., Running, S., Searchinger, T.D., and Smith, W.K.: Bioenergy: How much can we expect for 2050?. Environ. Res. Lett. 8, 031004 (2013). doi: 10.1088/1748-9326/8/3/031004.
116. Haberl, H., Erb, K-H., Krausmann, F., Bondeau, A., Lauk, C., Müller, C., Plutzar, C., and Steinberger, J.K.: Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields. Biomass Bioenergy 35, 47534769 (2011). doi: 10.1016/j.biombioe.2011.04.035.
117. Haberl, H. and Geissler, S.: Cascade utilization of biomass: Strategies for a more efficient use of a scarce resource. Ecol. Eng. 16(Suppl 1), 111121 (2000). doi: 10.1016/S0925-8574(00)00059-8.
118. Amon, T., Amon, B., Kryvoruchko, V., Machmüller, A., Hopfner-Sixt, K., Bodiroza, V., Hrbek, R., Friedel, J., Pötsch, E., Wagentristl, H., Schreiner, M., and Zollitsch, W.: Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 98, 32043212 (2007). doi: 10.1016/j.biortech.2006.07.007.
119. Fischer-Kowalski, M. and Hausknost, D.: Large scale societal transitions in the past. SEC Working paper 152 (2014), Vienna.
120. Schellnhuber, H.J., Messner, D., Leggewie, C., Leinfelder, R., Nakicenovic, N., Rahmstorf, S., Schlacke, S., Schmid, J., and Schubert, R.: World in Transition: A Social Contract for Sustainability (German Advisory Council on Global Change (WBGU), Berlin, 2011).
121. Butzer, K.W. and Endfield, G.H.: Critical perspectives on historical collapse. Proc. Natl. Acad. Sci. U. S. A. 109, 36283631 (2012). doi: 10.1073/pnas.1114772109.
122. Riddihough, G., Chin, G., Culotta, E., Jasny, B., Roberts, L., and Vignieri, S.: Human conflict: Winning the peace. Science 336, 818819 (2012). doi: 10.1126/science.336.6083.818.
123. Spinney, L.: Human cycles: History as science. Nature 488, 2426 (2012). doi: 10.1038/488024a.
124. Steinberger, J.K. and Roberts, J.T.: From constraint to sufficiency: The decoupling of energy and carbon from human needs, 1975–2005. Ecol. Econ. 70, 425433 (2010). doi: 10.1016/j.ecolecon.2010.09.014.
125. Steinberger, J.K., Roberts, J.T., Peters, G.P., and Baiocchi, G.: Pathways of human development and carbon emissions embodied in trade. Nat. Clim. Change 2, 8185 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Energy & Sustainability
  • ISSN: 2329-2229
  • EISSN: 2329-2237
  • URL: /core/journals/mrs-energy-and-sustainability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 25
Total number of PDF views: 319 *
Loading metrics...

Abstract views

Total abstract views: 503 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th July 2018. This data will be updated every 24 hours.