Skip to main content
×
Home

Long-range, low-cost electric vehicles enabled by robust energy storage

  • Ping Liu (a1), Russel Ross (a2) and Aron Newman (a2)
Abstract
ABSTRACT

A variety of inherently robust energy storage technologies hold the promise to increase the range and decrease the cost of electric vehicles (EVs). These technologies help diversify approaches to EV energy storage, complementing current focus on high specific energy lithium-ion batteries.

The need for emission-free transportation and a decrease in reliance on imported oil has prompted the development of EVs. To reach mass adoption, a significant reduction in cost and an increase in range are needed. Using the cost per mile of range as the metric, we analyzed the various factors that contribute to the cost and weight of EV energy storage systems. Our analysis points to two primary approaches for minimizing cost. The first approach, of developing redox couples that offer higher specific energy than state-of-the-art lithium-ion batteries, dominates current research effort, and its challenges and potentials are briefly discussed. The second approach represents a new insight into the EV research landscape. Chemistries and architectures that are inherently more robust reduce the need for system protection and enables opportunities of using energy storage systems to simultaneously serve vehicle structural functions. This approach thus enables the use of low cost, lower specific energy chemistries without increasing vehicle weight. Examples of such systems include aqueous batteries, flow cells, and all solid-state batteries. Research progress in these technical areas is briefly reviewed. Potential research directions that can enable low-cost EVs using multifunctional energy storage technologies are described.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Long-range, low-cost electric vehicles enabled by robust energy storage
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Long-range, low-cost electric vehicles enabled by robust energy storage
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Long-range, low-cost electric vehicles enabled by robust energy storage
      Available formats
      ×
Copyright
Corresponding author
a) Address all correspondence to Ping Liu at ping.liu@hq.doe.gov
References
Hide All
1. Tran M., Banister D., Bishop J.D.K., and McCulloch M.D.: Realizing the electric-vehicle revolution. Nat. Clim. Change 2, 328 (2012).
2. U.S. Energy Information Administration: Annual Energy Review 2010, U.S. Energy Information Administration, Office of Energy Statistics, U.S. Department of Energy, Washington DC, (2011).
3. Elgowainy A., Han J., Poch L., Wang M., Vyas A., Mahalik M., and Rousseau A.: Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles. (2010). Available from: http://www.transportation.anl.gov/pdfs/TA/629.PDF (cited March 3, 2014).
4. Union of Concerned Scientists: State of Charge: Electric Vehicles’ Global Warming Emissions and Fuel-Cost Savings Across the United States. (2012). Available from: http://www.ucsusa.org/clean_vehicles/smart-transportation-solutions/advanced-vehicle-technologies/electric-cars/emissions-and-charging-costs-electric-cars.html (cited March 1, 2014).
5. Electric Drive Transportation Association: Electric Drive Sales Dashboard. (2014). Available from: http://www.electricdrive.org/index.php?ht=d/sp/i/20952/pid/20952 (cited March 1, 2014).
6. Bartlett J.: Survey: Consumers Express Concerns about Electric, Plug-in Hybrid Cars. (2012). Available from: http://www.consumerreports.org/cro/news/2012/01/survey-consumers-express-concerns-about-electric-plug-in-hybrid-cars/index.htm (cited March 3, 2014).
7. Eberle U. and von Helmolt R.: Sustainable transportation based on electric vehicle concepts: A brief overview. Energy Environ. Sci. 3, 689 (2010).
8. Krebs M.: Will Higher Gas Prices Boost Hybrid, Ev Sales? (2012). Available from: http://www.edmunds.com/industry-center/analysis/will-higher-gas-prices-boost-hybrid-ev-sales.html (cited March 3, 2014).
9. Howell D.: Battery Status, and Cost Reduction: Prospects in EV Everywhere Battery Workshop, Chicago, IL, 2012.
10. Tesla Motors: Gigafactory. (2014). Available from: www.teslamotors.com/sites/default/files/.../gigafactory.pdf (cited May 17, 2015).
11. USABC: Usabc Goals for Advanced Batteries for Evs. Available from: http://www.uscar.org/guest/article_view.php?articles_id=85 (cited May 16, 2015).
12. Wagner F.T., Lakshmanan B., and Mathias M.F.: Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1, 2204 (2010).
13. J. Ward : Ev Everywhere Battery Workshop: Preliminary Target-setting Framework. (2012). Available from: https://www1.eere.energy.gov/vehiclesandfuels/pdfs/ev_everywhere/4_ward_b.pdf (cited March 3, 2014).
14. Verbrugge M.W. and Borroni-Bird C.E.: Transportation: Fully autonomous vehicles. In Fundamentals of Materials for Energy and Environmental Sustainability, Ginley D.S. and Cahen D. eds.; Cambridge University Press: Cambridge, 2012.
15. RECHARGE aisbl: E-Mobility Roadmap for the Eu Battery Industry. (2013). Available from: http://www.rechargebatteries.org/wp-content/uploads/2013/04/Battery-Roadmap-RECHARGE-05-July-2013.pdf (cited May 17, 2015).
16. Liu P., Wang J., Hicks-Garner J., Sherman E., Soukiazian S., Verbrugge M., Tataria H., Musser J., and Finamore P.: Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses. J. Electrochem. Soc. 157, A499 (2010).
17. Deshpande R., Verbrugge M., Cheng Y-T., Wang J., and Liu P.: Battery cycle life prediction with coupled chemical degradation and fatigue mechanics. J. Electrochem. Soc. 159, A1730 (2012).
18. Wang J., Purewal J., Liu P., Hicks-Garner J., Soukazian S., Sherman E., Sorenson A., Vu L., Tataria H., and Verbrugge M.W.: Degradation of lithium ion batteries employing graphite negatives and nickel–cobalt–manganese oxide plus spinel manganese oxide positives: Part 1, aging mechanisms and life estimation. J. Power Sources 269, 937 (2014).
19. Pinson M.B. and Bazant M.Z.: Theory of SEI formation in rechargeable batteries: Capacity fade, accelerated aging and lifetime prediction. J. Electrochem. Soc. 160, A243 (2013).
20. Sarasketa-Zabala E., Aguesse F., Villarreal I., Rodriguez-Martinez L.M., Lopez C.M., and Kubiak P.: Understanding lithium inventory loss and sudden performance fade in cylindrical cells during cycling with deep-discharge steps. J. Phys. Chem. C 119, 896 (2015).
21. Narayanrao R., Joglekar M.M., and Inguva S.: A phenomenological degradation model for cyclic aging of lithium ion cell materials. J. Electrochem. Soc. 160, A125 (2013).
22. Liaw B.Y., Jungst R.G., Nagasubramanian G., Case H.L., and Doughty D.H.: Modeling capacity fade in lithium-ion cells. J. Power Sources 140, 157 (2005).
23. Broussely M., Herreyre S., Biensan P., Kasztejna P., Nechev K., and Staniewicz R.J.: Aging mechanism in Li ion cells and calendar life predictions. J. Power Sources 9798, 13 (2001).
24. Gallagher K.G., Goebel S., Greszler T., Mathias M., Oelerich W., Eroglu D., and Srinivasan V.: Quantifying the promise of lithium-air batteries for electric vehicles. Energy Environ. Sci. 7, 1555 (2014).
25. McDowell M.T., Lee S.W., Nix W.D., and Cui Y.: 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966 (2013).
26. Szczech J.R. and Jin S.: Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56 (2011).
27. Wu H., Chan G., Choi J.W., Ryu I., Yao Y., McDowell M.T., Lee S.W., Jackson A., Yang Y., Hu L., and Cui Y.: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 309 (2012).
28. Park M.H., Kim M.G., Joo J., Kim K., Kim J., Ahn S., Cui Y., and Cho J.: Silicon nanotube battery anodes. Nano Lett. 9, 3844 (2009).
29. Xin S., Qingliu W., Juchuan L., Xingcheng X., Lott A., Wenquan L., Sheldon B.W., and Ji W.: Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 4, 1300882 (23 pp.) (2014).
30. Xu W., Wang J., Ding F., Chen X., Nasybulin E., Zhang Y., and Zhang J-G.: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513 (2014).
31. Monroe C. and Newman J.: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005).
32. Aurbach D., Zaban A., Gofer Y., Ely Y.E., Weissman I., Chusid O., and Abramson O.: Recent studies of the lithium-liquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems. J. Power Sources 54, 76 (1995).
33. Aurbach D., Weissman I., Zaban A., and Chusid O.: Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts. Electrochim. Acta 39, 51 (1994).
34. Shiraishi S., Kanamura K., and Takehara Z.: Surface condition changes in lithium metal deposited in nonaqueous electrolyte containing Hf by dissolution-deposition cycles. J. Electrochem. Soc. 146, 1633 (1999).
35. Mogi R., Inaba M., Jeong S.K., Iriyama Y., Abe T., and Ogumi Z.: Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 149, A1578 (2002).
36. Stark J.K., Ding Y., and Kohl P.A.: Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery. J. Electrochem. Soc. 158, A1100 (2011).
37. Ding F., Xu W., Graff G.L., Zhang J., Sushko M.L., Chen X.L., Shao Y.Y., Engelhard M.H., Nie Z.M., Xiao J., Liu X.J., Sushko P.V., Liu J., and Zhang J.G.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450 (2013).
38. Sadoway D.R., Huang B.Y., Trapa P.E., Soo P.P., Bannerjee P., and Mayes A.M.: Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries. J. Power Sources 9798, 621 (2001).
39. Bouchet R., Maria S., Meziane R., Aboulaich A., Lienafa L., Bonnet J.P., Phan T.N.T., Bertin D., Gigmes D., Devaux D., Denoyel R., and Armand M.: Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452 (2013).
40. Bates J.B., Dudney N.J., Neudecker B., Ueda A., and Evans C.D.: Thin-film lithium and lithium-ion batteries. Solid State Ionics 135, 33 (2000).
41. Barghamadi M., Kapoor A., and Wen C.: A review on Li–S batteries as a high efficiency rechargeable lithium battery. J. Electrochem. Soc. 160, A1256 (2013).
42. Bresser D., Passerini S., and Scrosati B.: Recent progress and remaining challenges in sulfur-based lithium secondary batteries—A review. Chem. Commun. 49, 10545 (2013).
43. Yang Y., Zheng G., and Cui Y.: Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018 (2013).
44. Wang D-W., Zeng Q., Zhou G., Yin L., Li F., Cheng H-M., Gentle I.R., and Lu G.Q.M.: Carbon-sulfur composites for Li–S batteries: Status and prospects. J. Mater. Chem. A 1, 9382 (2013).
45. Ji X. and Nazar L.F.: Advances in Li–S batteries. J. Mater. Chem. 20, 9821 (2010).
46. Ji X., Lee K.T., and Nazar L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500 (2009).
47. Wan W., Pu W., and Ai D.: Research progress in lithium sulfur battery. Prog. Chem. 25, 1830 (2013).
48. Yin Y-X., Xin S., Guo Y-G., and Wan L-J.: Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 52, 13186 (2013).
49. Zhang S.S.: Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 231, 153 (2013).
50. Pope M.A. and Aksay I.A.: Structural design of cathodes for Li–S batteries. Adv. Energy Mater. 5 (2015). doi: 10.1002/aenm.201500124.
51. Balaish M., Kraytsberg A., and Ein-Eli Y.: A critical review on lithium–air battery electrolytes. Phys. Chem. Chem. Phys. 16, 2801 (2014).
52. Rahman M.A., Wang X., and Wen C.: A review of high energy density lithium–air battery technology. J. Appl. Electrochem. 44, 5 (2014).
53. Garcia-Araez N. and Novak P.: Critical aspects in the development of lithium–air batteries. J. Solid State Electrochem. 17, 1793 (2013).
54. Rahman M.A., Wang X., and Wen C.: High energy density metal–air batteries: A review. J. Electrochem. Soc. 160, A1759 (2013).
55. Shao Y., Ding F., Xiao J., Zhang J., Xu W., Park S., Zhang J.-G., Wang Y., and Liu J.: Making Li–air batteries rechargeable: Material challenges. Adv. Funct. Mater. 23, 987 (2013).
56. Christensen J., Albertus P., Sanchez-Carrera R.S., Lohmann T., Kozinsky B., Liedtke R., Ahmed J., and Kojic A.: A critical review of Li/Air batteries. J. Electrochem. Soc. 159, R1 (2012).
57. Van Noorden R.: The rechargeable revolution: A better battery. Nature 507, 3 (2014).
58. Orikasa Y., Masese T., Koyama Y., Mori T., Hattori M., Yamamoto K., Okado T., Huang Z-D., Minato T., Tassel C., Kim J., Kobayashi Y., Abe T., Kageyama H., and Uchimoto Y.: High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci. Rep. 4, 5622 (2014).
59. Lin M-C., Gong M., Lu B., Wu Y., Wang D-Y., Guan M., Angell M., Chen C., Yang J., Hwang B-J., and Dai H.: An ultrafast rechargeable aluminium-ion battery. Nature 520, 324 (2015).
60. Harmon J., Gopalakrishnan P., and Mikolajczak C.: Us Faa-Style Flammability Assessment of Lithium-ion Batteries Packed with and Contained in Equipments (Un3481). Exponent (2010). Available from: http://www.prba.org/wp-content/uploads/Exponent_Report_on_Laptop_Fire_Testing-WRFMAIN-13116235-v11.pdf (cited March 3, 2014).
61. Gabrielli D.: Summary of safety related vehicle design issues. In 3rd Annual Electric Vehicle Safety Standards Summit, Detroit, MI, 2012.
62. Smith B.: Chevy Volt Battery Incident Overview Report. (2012). Available from: http://www-odi.nhtsa.dot.gov/acms/cs/jaxrs/download/doc/UCM399393/INRP-PE11037-49880.pdf (cited March 3, 2014).
63. ARPA-E: Advanced Management and Protection of Energy Storage Devices. (2014). Available from: http://arpa-e.energy.gov/?q=arpa-e-site-page/view-programs (cited March 3, 2014).
64. Nagasubramanian G. and Fenton K.: Reducing Li-ion safety hazards through use of non-flammable solvents and recent work at Sandia national laboratories. Electrochim. Acta 101, 3 (2013).
65. Roth E.P., Doughty D.H., and Pile D.L.: Effects of separator breakdown on abuse response of 18650 Li-ion cells. J. Power Sources 174, 579 (2007).
66. Kim H.C. and Wallington T.J.: Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: Review and harmonization. Environ. Sci. Technol. 47, 6089 (2013).
67. Liu J., Zhang J-G., Yang Z., Lemmon J.P., Imhoff C., Graff G.L., Li L., Hu J., Wang C., Xiao J., Xia G., Viswanathan V.V., Baskaran S., Sprenkle V., Li X., Shao Y., and Schwenzer B.: Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid. Adv. Funct. Mater. 23, 929 (2013).
68. Wang W., Luo Q., Li B., Wei X., Li L., and Yang Z.: Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23, 970 (2013).
69. Zhou Z., Benbouzid M., Charpentier J.F., Scuiller F., and Tang T.: A review of energy storage technologies for marine current energy systems. Renewable Sustainable Energy Rev. 18, 390 (2013).
70. Leung P., Li X., de Leon C.P., Berlouis L., Low C.T.J., and Walsh F.C.: Progress in redox flow batteries, remaining challenges and their applications in energy storage. Rsc Adv. 2, 10125 (2012).
71. Duduta M., Ho B., Wood V.C., Limthongkul P., Brunini V.E., Carter W.C., and Chiang Y-M.: Semi-solid lithium rechargeable flow battery. Adv. Energy Mater. 1, 511 (2011).
72. Dunn B., Kamath H., and Tarascon J-M.: Electrical energy storage for the grid: A battery of choices. Science 334, 928 (2011).
73. Parker J.F., Chervin C.N., Nelson E.S., Rolison D.R., and Long J.W.: Wiring zinc in three dimensions Re-writes battery performance-dendrite-free cycling. Energy Environ. Sci. 7, 1117 (2014).
74. Beck F. and Ruetschi P.: Rechargeable batteries with aqueous electrolytes. Electrochim. Acta 45, 2467 (2000).
75. Brost R.D.: Performance of valve-regulated lead acid batteries in Ev1 extended series strings. In The Thirteenth Annual Battery Conference on Applications and Advances, California State University, Long Beach, California, 1998.
76. Beverskog B. and Puigdomenech I.: Revised pourbaix diagrams for nickel at 25–300 degrees C. Corros. Sci. 39, 969 (1997).
77. Cheng F.Y., Liang J., Tao Z.L., and Chen J.: Functional materials for rechargeable batteries. Adv. Mater. 23, 1695 (2011).
78. Gu S., Gong K., Yan E.Z., and Yan Y.: A multiple ion-exchange membrane design for redox flow batteries. Energy Environ. Sci. 7, 29862998 (2014).
79. Ruetschi P.: Aging mechanisms and service life of lead–acid batteries. J. Power Sources 127, 33 (2004).
80. Luo J.Y., Cui W.J., He P., and Xia Y.Y.: Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760 (2010).
81. Trevey J.E., Gross A.F., Wang J., Liu P., and Vajo J.J.: Stable cycling and excess capacity of a nanostructured Sn electrode based on Sn(CH3COO)2 confined within a nanoporous carbon scaffold. Nanotechnology 24, 6 (2013).
82. Cabana J., Monconduit L., Larcher D., and Palacin M.R.: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170 (2010).
83. Li H., Wang Z., Chen L., and Huang X.: Research on advanced materials for Li-ion batteries. Adv. Mater. 21, 4593 (2009).
84. Chen Z.H., Qin Y., and Amine K.: Redox shuttles for safer lithium-ion batteries. Electrochim. Acta 54, 5605 (2009).
85. Quartarone E. and Mustarelli P.: Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 40, 2525 (2011).
86. Takada K.: Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759 (2013).
87. Trevey J.E., Gilsdorf J.R., Stoldt C.R., Lee S.-H., and Liu P.: Electrochemical Investigation of all-solid-state lithium batteries with a high capacity sulfur-based electrode. J. Electrochem. Soc. 159, A1019 (2012).
88. Yersak T.A., Macpherson H.A., Kim S.C., Le V-D., Kang C.S., Son S-B., Kim Y-H., Trevey J.E., Oh K.H., Stoldt C., and Lee S-H.: Solid state enabled reversible four electron storage. Adv. Energy Mater. 3, 120 (2013).
89. Bates J.B., Dudney N.J., Lubben D.C., Gruzalski G.R., Kwak B.S., Yu X.H., and Zuhr R.A.: Thin-film rechargeable lithium batteries. J. Power Sources 54, 58 (1995).
90. Xu K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303 (2004).
91. Takada K., Aotani N., and Kondo S.: Electrochemical behaviors of Li+ ion conductor, Li3po4–Li2s–Sis2 . J. Power Sources 43, 135 (1993).
92. Hayashi A., Minami K., Mizuno F., and Tatsumisago M.: Formation of Li+ superionic crystals from the Li2S–P2S5 melt-quenched glasses. J. Mater. Sci. 43, 1885 (2008).
93. Mizuno F., Hayashi A., Tadanaga K., and Tatsumisago M.: New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater. 17, 918 (2005).
94. Inaguma Y., Chen L.Q., Itoh M., Nakamura T., Uchida T., Ikuta H., and Wakihara M.: High ionic-conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689 (1993).
95. Kamaya N., Homma K., Yamakawa Y., Hirayama M., Kanno R., Yonemura M., Kamiyama T., Kato Y., Hama S., Kawamoto K., and Mitsui A.: A lithium superionic conductor. Nat. Mater. 10, 682 (2011).
96. Trevey J.E., Stoldt C.R., and Lee S.H.: High power nanocomposite Tis2 cathodes for all-solid-state lithium batteries. J. Electrochem. Soc. 158, A1282 (2011).
97. Koyama Y., Chin T.E., Rhyner U., Holman R.K., Hall S.R., and Chiang Y.M.: Harnessing the actuation potential of solid-state intercalation compounds. Adv. Funct. Mater. 16, 492 (2006).
98. Li W.Y., Zheng G.Y., Yang Y., Seh Z.W., Liu N., and Cui Y.: High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc. Natl. Acad. Sci. U. S. A. 110, 7148 (2013).
99. Christodoulou L. and Venables J.D.: Multifunctional material systems: The first generation. JOM 55, 39 (2003).
100. Snyder J.F., Wetzel E.D., and Watson C.M.: Improving multifunctional behavior in structural electrolytes through copolymerization of structure- and conductivity-promoting monomers. Polymer 50, 4906 (2009).
101. Asp L.E.: Multifunctional composite materials for energy storage in structural load paths. Plast., Rubber Compos. 42, 144 (2013).
102. Leijonmarck S., Carlson T., Lindbergh G., Asp L.E., Maples H., and Bismarck A.: Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries. Compos. Sci. Technol. 89, 149 (2013).
103. Ekstedt S., Wysocki M., and Asp L.E.: Structural batteries made from fibre reinforced composites. Plast., Rubber Compos. 39, 148 (2010).
104. Liu P., Sherman E., and Jacobsen A.: Design and fabrication of multifunctional structural batteries. J. Power Sources 189, 646 (2009).
105. MacKenzie A.: Volvo to Replace Body Parts with Energized Carbon Fiber Panels. (2013). Available from: http://www.gizmag.com/volvo-battery-infused-structural-components/29437/ (cited March 28, 2014).
106. Sahraei E. and Wierzbicki T.: Modeling of cylindrical and pouch cells for crash energy absorption and electric short circuit. In ARPA-E Crash Safe Energy Storage Systems for Electric Vehicles Workshop, Golden, CO, 2012.
107. Chen X., Surani F.B., Kong X., Punyamurtula V.K., and Qiao Y.: Energy absorption performance of steel tubes enhanced by a nanoporous material functionalized liquid. Appl. Phys. Lett. 89, (2006).
108. Ginsberg S.: Crash deformable battery concept for electric vehicles. In Aachen Body Engineering Days 2011, Aachen, Germany, 2011.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Energy & Sustainability
  • ISSN: 2329-2229
  • EISSN: 2329-2237
  • URL: /core/journals/mrs-energy-and-sustainability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 39
Total number of PDF views: 343 *
Loading metrics...

Abstract views

Total abstract views: 576 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.