Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T08:43:44.141Z Has data issue: false hasContentIssue false

(110) InAs Quantum Dots: Growth, Single-Dot Luminescence and Cleaved Edge Alignment

Published online by Cambridge University Press:  26 February 2011

D. Wasserman
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
E. A. Shaner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
S. A. Lyon
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
M. Hadjipanayi
Affiliation:
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
A. C. Maciel
Affiliation:
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
J. F. Ryan
Affiliation:
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
Get access

Abstract

The formation of InAs self-assembled quantum dots on (110) GaAs substrates is demonstrated. These dots form with significantly lower densities than InAs dots grown on (100) GaAs. The low density growth mode of these InAs nanostructures allows for the fabrication of devices capable of electroluminescence from individual quantum dots. Such a device has been fabricated with conventional photolithography and its emission spectra characterized. Additionally, because GaAs cleaves naturally along the (110) crystal plane, the ability to grow InAs quantum dots on (110) GaAs substrates allows for the growth of these dots on the cleaved edges of GaAs first growth samples containing InGaAs strain layers of varying thickness and In fraction. 100% linear alignment of InAs quantum dots over these InGaAs strain layers is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mui, D., Leonard, D., Coldren, L., and Petroff, P., Appl. Phys. Lett., 66, 16201622 (1995)Google Scholar
2 Kohmoto, S., Nakamura, N., Ishikawa, T., and Asakawa, K., Appl. Phys. Lett., 73, 34883490 (1999)Google Scholar
3 Pfeiffer, L., West, K. W., Stormer, H. L., Eisenstein, J. P., Baldwin, K. W., Gershoni, D., and Spector, J., Appl. Phys. Lett. 56, 16971699 (1990).Google Scholar
4 Stormer, H.L., Pfeiffer, L.N., Baldwin, K.W., West, K.W., and Spector, J., Appl. Phys. Lett. 58, 725727 (1991).Google Scholar
5 Bauer, J., Schuh, D., Ucelli, E., Schulz, R., Kress, A., Hofbauer, F., Finley, J.J., and Abstreiter, G., Appl. Phys. Lett. 85, 47505752 (2004)Google Scholar
6 Wasserman, D., Lyon, S. A., Hadjipanayi, M., Maciel, A., and Ryan, J. F., Appl. Phys. Lett. 83, 50505052 (2003)Google Scholar
7 Xie, Q., Madhukar, Anupam, Chen, Ping, and Kobayashi, Nobuhiko P., Phys. Rev. Lett. 75, 25422545 (1995)Google Scholar
8 Solomon, G. S., Trezza, J. A., Marshall, A. F., and Harris, J. S. Jr, Phys. Rev. Lett. 76, 952955 (1996)Google Scholar
9 Yuan, Z., Kardynal, B. E., Stevenson, R. M., Shields, A. J., Lobo, C. J., Cooper, K., Beattie, N. S., Ritchie, D. A., and Pepper, M., Science 295 p.102105 (2002)Google Scholar
10 Dekel, E., Gershoni, D., Ehrenfreund, E., Spektor, D., Garcia, J. M., and Petroff, P. M., Phys. Rev. Lett. 80, 49914994 (1998)Google Scholar
11 Koteles, Emil S., Elman, B.S., Jagannath, C., and Chen, Y.J., Appl. Pys. Lett. 49, 14651467 (1986).Google Scholar
12 Zhukov, A.E., Kovsh, A.R., Egorov, A. Yu., Maleev, N.A., Ustinov, V.M., Volovik, B.V., Maksimov, M.V., Tsatsul'nikov, A.F., Ledentsov, N.N., Shernyakov, Yu. M., Lunev, A.V., Musikhin, Yu. G., Bert, N.A., Kop'ev, P.S., and Alferov, Zh. I., Semiconductors 33, 153155 (1999).Google Scholar
13 Ma, Zhizun, Pierz, Klaus, and Hinze, Peter, Appl. Phys. Lett. 79, 25642566 (2001).Google Scholar
14 Findeis, F., Zrenner, A., Bohm, G., and Abstreiter, G., Sol. State Comm., 114, 227230 (2000).Google Scholar
15 Landin, L., Pistol, M.-E., Pryor, C., Persson, M., Samuelson, L., and Miller, M., Phys. Rev. B 60, 16,640–16,646 (1999).Google Scholar
16 Wasserman, D. and Lyon, S. A., Appl. Phys. Lett., 85, 53525354 (2004)Google Scholar