Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T04:17:10.343Z Has data issue: false hasContentIssue false

Ab initio Study of Metal Atoms on SWNT Surface

Published online by Cambridge University Press:  21 March 2011

Shu Peng
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
Kyeongjae Cho
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
Get access

Abstract

Interactions of metal atoms (Al, Ti) with semiconducting single walled carbon nanotube (SWNT) are investigated using first-principles pseudopotential calculations. Six different adsorption configurations for aluminum and titanium atoms are studied. Comparison of the energetics of these metal atoms on (8,0) SWNT surface shows significant differences in binding energy and diffusion barrier. These differences give an insight to explain why most of metal atoms (such as Al) form discrete particles on nanotube while continuous nanowires are obtained by using titanium in the experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Iijima, S., Nature 354, 56 (1991).Google Scholar
[2] Falvo, M.R., Clary, G.J., Taylor, R.M. II, Chi, V., Brooks, F.P. Jr, Washburn, S., and Superfine, R., Nature 389, 582 (1997).Google Scholar
[3] Treacy, M.M.J., Ebbesen, T.W., and Gibson, J.M., Nature 389, 678 (1996).Google Scholar
[4] Wong, E.W., Sheehan, P.E., and Lieber, C.M., Science 277, 1971 (1997).Google Scholar
[5] Charlier, J.C. and Issi, J.P., Appl. Phys. A 67, 79 (1998).Google Scholar
[6] Chico, L., Crespi, V.H., Benedict, L.X., Louie, S.G., and Cohen, M.L., Phys. Rev. Lett. 76, 971 (1996).Google Scholar
[7] Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., and Dai, H., Science 287, 622 (2000).Google Scholar
[8] Tans, S.J., Verschueren, A., Dekker, C., Nature 393, 49 (1998).Google Scholar
[9] Martel, R., Schmidt, T., Shea, H., Hertel, T., Avouris, P., Appl. Phys. Lett. 73, 2447 (1998).Google Scholar
[10] Iijima, S. and Ichihashi, T., Nature 363, 603 (1993).Google Scholar
[11] Dai, H., Wong, E.W., Lu, Y.Z., Dan, S., Lieber, C.M., Nature 375, 769 (1995).Google Scholar
[12] Han, W.Q., Fan, S.S., Li, Q.Q., Hu, Y.D., Science 277, 1287 (1997).Google Scholar
[13] Zhang, Y., Franklin, N.W., Chen, R.J., Dai, H., Chem. Phys. Lett. 331, 35 (2000).Google Scholar
[14] Zhang, Y. and Dai, H., Appl. Phys. Lett. 77, 3015 (2000).Google Scholar
[15] Ma, Q. and Rosenberg, R.A., Phys. Rev. B 60, 2827 (1999).Google Scholar
[16] Ohno, T.R., Chen, Y., Harvey, S.E., Kroll, G.H., Benning, P.J., Weaver, J.H., Chibante, L.P.F., and Smalley, R.E., Phys. Rev. B 47, 2389 (1993).Google Scholar
[17] Mintmire, J.W., Dunlap, B.I., White, C.T., Phys. Rev. Lett. 68 (1992) 631.Google Scholar
[18] Blase, X., Benedict, L.X., Shirley, E.L., Louie, S.G., Phys. Rev. Lett. 72 1878 (1994).Google Scholar
[19] Menon, M., Andriotis, A.N., Froudakis, G.E., Chem. Phys. Lett. 320 425 (2000).Google Scholar
[20] Beigi, S.I., Arias, T.A., Computer Phys. Comm. 128, 1 (2000) (Website, http://dft.mit.edu/dft++).Google Scholar
[21] Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
[22] Peng, S. and Cho, K., Nanotechnology, 11, 57 (2000).Google Scholar
[23] Srivastava, D., Menon, M., and Cho, K., Phys. Rev. Lett. 83, 2973 (1999).Google Scholar
[24] Kittel, C., Introduction to Solid State Physics, 7th ed, John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 1996.Google Scholar