Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-zxw8g Total loading time: 0.194 Render date: 2023-01-29T08:47:39.313Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Crystal Growth and Characterization of CdTe and Cd0.9Zn0.1Te for Nuclear Radiation Detectors

Published online by Cambridge University Press:  01 February 2011

Krishna Mandal
Affiliation:
kmandal@eiclabs.com, EIC Laboratories, Inc., Advanced Materials, 111 Downey St, Norwood, MA, 02062, United States, 781-769-9450, 781-551-0283
Sung H. Kang
Affiliation:
kmandal@eiclabs.com, EIC Laboratories, Inc., Norwood, MA, 02062, United States
Michael Choi
Affiliation:
kmandal@eiclabs.com, EIC Laboratories, Inc., Norwood, MA, 02062, United State s
Alket Mertiri
Affiliation:
amertiri@eiclabs.com, EIC Laboratories, Inc., Norwood, MA, 02062, United States
Gary W Pabst
Affiliation:
gpabst@eiclabs.com, EIC Laboratories, Inc., Norwood, MA, 02062, United States
Caleb Noblitt
Affiliation:
kmandal@eiclabs.com, EIC Laboratories, Inc., Norwood, MA, 02062, United States
Get access

Abstract

CdTe and Cd0.9Zn0.1Te (CZT) crystals have been studied extensively at EIC Laboratories, Inc. for various applications including x- and γ-ray imaging and high energy radiation detectors. The crystals were grown from in-house zone refined ultra pure precursor materials using a vertical Bridgman furnace. The growth process has been monitored, controlled and optimized by a computer simulation and modeling program (MASTRAPP). The grown crystals were thoroughly characterized after sequential surface passivations and post-growth annealing treatments with and without component overpressures. The infrared (IR) transmission images of the post-treated CdTe and CZT crystals showed average Te inclusion size of ∼10 μm for CdTe crystal and ∼8 μm for CZT crystal. The etch pit density was ≤ 5×104 cm−2 for CdTe and ≤ 3×104 cm−2 for CZT. Various planar and Frisch collar detectors were fabricated and evaluated. From the current-voltage measurements, the electrical resistivity was estimated to be ∼1.5×1010 Ω·cm for CdTe and 2-5×1011 Ω·cm for CZT. The Hecht analysis of electron and hole mobility-lifetime products (μτe and μτh) showed μτe=2×10−3 cm2/V (μτh=8×10−5 cm2/V) and μτ3-6×10−3 cm2/V (μτh=4-6×10−5 cm2/V) for CdTe and CZT, respectively. Final assessments of the detector performance have been carried out using 241Am (60 keV) and 137Cs (662 keV) energy sources and the results are presented in this paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Egarievwe, S. U., Chen, K.-T., Burger, A., James, R. B. and Lisse, M., J. X-ray Sci. and Tech. 6, 309 (1996).Google Scholar
2. McGregor, D.S., He, Z., Seifert, H.A., Wehe, D. K. and Rojeski, R. A., Appl. Phys. Lett. 72, 792 (1998).10.1063/1.120895CrossRefGoogle Scholar
3. McNeil, W. J., McGregor, D. S., Bolotnikov, A. E., Wright, G. W. and James, R. B., Appl. Phys. Lett. 84, 1988 (2004).CrossRefGoogle Scholar
4. Barrett, H. H., Eskin, J. D., and Barber, H. B., Phys. Rev. Lett. 75, 156 (1995).10.1103/PhysRevLett.75.156CrossRefGoogle Scholar
5. Luke, P. N., Appl. Phys. Lett. 65, 2884 (1994).CrossRefGoogle Scholar
6. James, R. B., Schlesinger, T.E., Lund, J. and Schieber, M., “Semiconductors for Room Temperature Nuclear Detector Applications” (Academic Press, New York, 1995).Google Scholar
7. Burger, A., Chen, H., Chattopadhyay, K., Ndap, J. O., Egarievwe, S. U. and James, R.B., SPIE 3446, 154 (1998).Google Scholar
8. Sen, S., Hettich, H.L., Rhiger, D.R., Price, S. L., Currie, M. C., Ginn, R.P. and McLean, E. O., J. Electron. Mater. 28, 718 (1999).CrossRefGoogle Scholar
9. Krawczynski, H., Jung, I., Perkins, J., A. Burger and Groza, M., SPIE 5540, 1 (2004).Google Scholar
10. Garandet, J.P., Favier, J.J. and Camel, D., “Handbook of Crystal Growth” (Elsevier Science, Amsterdam, 1994).Google Scholar
11. Mandal, Krishna C., Kang, S. H., Choi, M., Kargar, Alireza, Harrison, Mark J., McGregor, Douglas S., Bolotnikov, A. E., Karini, G. A., Camarda, G. C., and James, R. B., IEEE Trans. Nucl. Sci. 54, 802 (2007).CrossRefGoogle Scholar
12. Koley, G., Liu, J. and Mandal, Krishna C., Appl. Phys. Lett. 90, 102121 (2007).10.1063/1.2712496CrossRefGoogle Scholar
13. Mandal, Krishna C., Kang, S. H., Choi, M., Wei, J., Zheng, L., Zhang, H., Jellison, G. E., Groza, M. and Burger, A., J. Electron. Mater. 36 1013 (2007).10.1007/s11664-007-0164-yCrossRefGoogle Scholar
14. Zhang, H., Zheng, L. L., Prasad, V. and Larson, D. J. Jr, J. Heat Transfer 120, 865 (1998).CrossRefGoogle Scholar
15. Ma, R.H., Zhang, H., Larson, D.J. Jr, and Mandal, Krishna C., J. Crystal Growth, 266, 216 (2004).CrossRefGoogle Scholar
16. Pandy, A., Yeckel, A., Reed, M., Szeles, C., Hainke, M., Müller, G., and Derby, J.J., J. Crystal Growth, 276, 133 (2005).10.1016/j.jcrysgro.2004.11.303CrossRefGoogle Scholar
17. Yeckel, A., Compère, G., Pandy, A., and Derby, J.J., J. Crystal Growth, 263, 629 (2004).CrossRefGoogle Scholar
18. Yeckel, A. and Derby, J.J., J. Crystal Growth, 233, 599 (2001).CrossRefGoogle Scholar
19. Yeckel, A., Doty, F.P., and Derby, J.J., J. Crystal Growth, 203, 87 (1999).CrossRefGoogle Scholar
20. Everson, W.J., Ard, C.K., Sepich, J.L., Dean, B.E., Neugebauer, G.T. and Schaake, H.F., J. Electron. Mater. 24, 505 (1995).10.1007/BF02657954CrossRefGoogle Scholar
21. Jellison, G. E., Jr. and Modine, F. A., Appl. Opt. 36, 8184 (1997); ibid. 36, 8190 (1997).10.1364/AO.36.008184CrossRefGoogle Scholar
22. Jellison, G. E., Jr., Griffiths, C. O., Holcomb, D. E. and Rouleau, C. M., Appl. Opt. 41, 6555 (2002).10.1364/AO.41.006555CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Crystal Growth and Characterization of CdTe and Cd0.9Zn0.1Te for Nuclear Radiation Detectors
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Crystal Growth and Characterization of CdTe and Cd0.9Zn0.1Te for Nuclear Radiation Detectors
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Crystal Growth and Characterization of CdTe and Cd0.9Zn0.1Te for Nuclear Radiation Detectors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *