Hostname: page-component-f7d5f74f5-z2nk8 Total loading time: 0 Render date: 2023-10-04T17:33:06.286Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

MeV Ion Implantation in Electronic Materials*

Published online by Cambridge University Press:  25 February 2011

T. A. Todurello*
Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125
Get access


Using MeV ions for the modification of electronic materials offers a number of advantages: minimizing surface damage; implantation into completed devices – for example, through contacts or photoresist layers; producing controlled radiation damage for flux pinning where the ions pass completely through the sample and thus do not modify its chemical nature; and enhancing the electronic excitation of the target material versus collisional damage, as in adhesion enhancement processes. In all cases, however, one requires a detailed understanding of the new damage mechanisms that occur and how they can be modified in a controlled way by annealing. In this report I shall present examples from a number of our experiments: resistivity and index of refraction modification in semiconductors; adhesion enhancement; mixing of multilayer structures; and modification of the electronic properties of insulators and superconductors.

Research Article
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Supported in part by the National Science Foundation [Grant DMR90-11230]



1. Wie, C. R., Vreeland, T., and Tombrello, T. A., Nucl. Instr. Meth. B16, 44 (1986); Phys. Rev. B33, 4083 (1986); J. Appl. Phys. 59, 3743 (1986).Google Scholar
2. Xiong, F., Tsai, C. J., Vreeland, T., and Tombrello, T. A., J. Appl. Phys. 69, 2964 (1991).CrossRefGoogle Scholar
3. Xiong, F., Nieh, C. W., Tombrello, T. A., Jamieson, D. N., and Vreeland, T., Vacuum 39, 177 (1989).CrossRefGoogle Scholar
4. Bardin, T. T., Pronko, T. G., Junga, F. A., Opyd, W. A., Mardinly, A. J., Xiong, F., and Tombrello, T. A., Nucl. Instr. Meth. B24/25, 548 (1987).CrossRefGoogle Scholar
5. Xiong, F., Tombrello, T. A., Chen, T. R., Wang, H., Zhuang, Y. H., and Yariv, A., Nucl. Inst. Meth. B39, 487 (1989).CrossRefGoogle Scholar
6. Xiong, F., Tombrello, T. A., Wang, H., Chen, T. R., Chen, H. Z., Morkoc, H., and Yariv, A., Appl. Phys. Lett. 54, 730 (1989) and Mat. Res. Soc. Symp. Proc. 144, 367 (1989).CrossRefGoogle Scholar
7. Bryan, R. P., Coleman, J. J., Miller, L. M., Givens, M. E., Averback, R. S., and Klatt, J. L., Appl. Phys. Lett. 55, 94 (1989).CrossRefGoogle Scholar
8. Xiong, F., Tombrello, T. A., Schwartz, C. L., and Schwarz, S. A., Appl. Phys. Lett. 57, 896 (1990).CrossRefGoogle Scholar
9. Yeh, N.-C., Reed, D. S., Jiang, W., Kriplani, U., Kratel, W. H., Rice, A. P., Tombrello, T. A., Holzberg, F., Gupta, A., Strayer, D. M., and Kussmaul, A., Bull. Amer. Phys. Soc. 37, 537 (1992) and paper S 10.39, this meeting.Google Scholar
10. Griffith, J. E., Qiu, Y., and Tombrello, T. A., Nucl. Instr. Meth. 198, 607 (1982).CrossRefGoogle Scholar
11. Mendenhall, M. H., Ph.D. Thesis, California Institute of Technology (1983).Google Scholar
12. Ingemarsson, P. A., Sundqvist, B. U. R., Nieh, C. W., and Tombrello, T. A., Appl. Phys. Lett. 54, 1513 (1989).CrossRefGoogle Scholar
13. Venkatesan, T., Livi, R. P., Banwell, T. C., Tombrello, T. A., Nicolet, M.-A., Hamm, R., and Meixner, A. E., Mat. Res. Soc. Symp. 45, 189 (1985).CrossRefGoogle Scholar
14. Jones, T. J., Ph.D. Thesis, California Institute of Technology (1989).Google Scholar
15. Döbeli, M., Jones, T. J., Lee, A., Livi, R. P., and Tombrello, T. A., Rad. Eff. 118, 325 (1991).CrossRefGoogle Scholar
16. Hedin, A., Håkansson, P., Sundqvist, B. U. R., and Johnson, R. E., Phys. Rev, B31, 1780 (1985).CrossRefGoogle Scholar
17. Mott, N. F., Conduction in Non-Crystalline Materials, Clarendon Press Oxford, 1987.Google Scholar
18. Gingold, D. B. and Lobb, C. J., Phys. Rev. B42, 8220 (1990).CrossRefGoogle Scholar