Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T23:41:25.880Z Has data issue: false hasContentIssue false

Non-woven Membranes Electrospun from Polylactic Acid Incorporating Silver Nanoparticles as Biocide

Published online by Cambridge University Press:  19 March 2012

Haydee Vargas-Villagran
Affiliation:
Laboratorio de Nanopolimeros y Coloides, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mor. 62210, MEXICO.
Elvia Teran-Salgado
Affiliation:
Laboratorio de Nanopolimeros y Coloides, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mor. 62210, MEXICO.
Maraolina Dominguez-Diaz
Affiliation:
Laboratorio de Nanopolimeros y Coloides, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mor. 62210, MEXICO.
Osvaldo Flores
Affiliation:
Laboratorio de Nanopolimeros y Coloides, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mor. 62210, MEXICO.
Bernardo Campillo
Affiliation:
Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Mexico D.F. 04510, MEXICO.
Araceli Flores
Affiliation:
Instituto de Estructura de la Materia, C.S.I.C., Serrano 119, 28006 Madrid, SPAIN.
Angel Romo-Uribe*
Affiliation:
Laboratorio de Nanopolimeros y Coloides, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mor. 62210, MEXICO.
*
*To whom correspondence should be addressed: aromo-uribe@fis.unam.mx
Get access

Abstract

In this research, we describe the electrospinning processing of polylactic acid (PLA) and the influence of silver nanoparticles on the morphology and microstructure of produced non woven membranes thus produced. The PLA was electrospun from a chloroform solution and a filamentary and granular morphology was obtained, the filaments having an average diameter of 1.25 μm, When silver nanoparticles (of ca. 12 nm size) were incorporated, the filaments diameter was reduced to an average of 0.65 μm, and the density of beads was also reduced. The membranes were rather amorphous, as revealed by X-ray scattering, presumably due to the quenching process associated with the electrospinning process. Water contact angle measurements showed that silver nanoparticles induced significant hidrophobicity in the membranes as neat PLA membrane had a contact angle of 54° and PLA/Ag membrane exhibited an angle of 115°.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Albertsson, A.-C., Kumari, I., Lochab, B., Finne-Wistrand, A., and Kumar, K., in Design and synthesis of different types of Poly(Lactic Acid). Poly(Lactic Acid): synthesis, structures, properties, processing and applications, edited by Auras, R., Lim, L. L.-T., Selke, S.E.M., and Tsuji, H.. (Wiley, USA, 2010) p. 43.Google Scholar
2. Sawyer, L.C., Grub, D.T., Meyers, G.F., in Polymer Microscopy, 3 rd edition. (Springer, USA, 2008) p. 8.Google Scholar
3. Weir, E., Lawlor, A., Whelan, A. and Regan, F.. Analyst. 133, 835 (2008).Google Scholar
4. Cooley, J.F., U.S. Patent No. 692631 (1902).Google Scholar
5. Morton, W.J., U.S. Patent No. 705691 (1902).Google Scholar
6. Formhals, A., U.S. Patent No. 1975504 (1934).Google Scholar
7. Larrondfo, L. and Manley, J.. J. Polym. Sci. Part B: Polym. Phys. 19, 909 (1981).Google Scholar
8. Reneker, D.H. and Chun, I.. Nanotechnology 7, 216 (1996).Google Scholar
9. Taylor, G.I., Proc. R. Soc. Lond. Ser. A 313, 453 (1969).Google Scholar
10. Schiffman, J.D. and Schauer, C.L., Polymer Reviews 48, 317 (2008).Google Scholar
11. Sombatmankhong, K., Suwantong, O., Waleetorncheepsawat, S. and Supaphol, P.. J. Polym. Sci. Part B: Polym. Phys. 44, 2923 (2006).Google Scholar
12. Domínguez-Díaz, M., Romo-Uribe, A., Flores, A. and Cruz-Silva, R., to be submitted.Google Scholar
13. Perego, G., Cella, G.D. and Bastioli, C.. Journal of Applied Polymer Science. 59, 3743 (1996).Google Scholar
14. Teran-Salgado, E., Valerio-Cardenas, C. and Romo-Uribe, A., Polym. Materials Sci. Eng. 105, 910 (2011).Google Scholar
15. Krouse, S.A., Schrock, R.R. and Cohen, R.E.. Macromolecules 20, 904 (1987).Google Scholar