Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-l8x48 Total loading time: 0.403 Render date: 2023-01-31T04:35:53.606Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Polycrystalline Lead Iodide Films: Optical, Electrical and X-ray Counting Characterization

Published online by Cambridge University Press:  17 March 2011

L. Fornaro
Affiliation:
Radiochemistry Department, Faculty of Chemistry, Montevideo, URUGUAY
E. Saucedo
Affiliation:
Radiochemistry Department, Faculty of Chemistry, Montevideo, URUGUAY
L. Mussio
Affiliation:
Radiochemistry Department, Faculty of Chemistry, Montevideo, URUGUAY
A. Gancharov
Affiliation:
Radiochemistry Department, Faculty of Chemistry, Montevideo, URUGUAY
F. Guimaraes
Affiliation:
Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, SP, BRASIL
A. Hernandes
Affiliation:
Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, SP, BRASIL
Get access

Abstract

Lead iodide purified by zone refining and repeated sublimation was used for growing Polycrystalline films by physical vapor deposition. Palladium film was deposited as rear contact onto glass and alumina substrates 2.5 × 2.5 cm2 in size. Onto it, lead iodide polycrystalline films were grown by sublimation at 390 °C and 5 × 10−5 mm Hg, substrate temperatures of about 200 °C and deposition times of about 10 days. Film thickness was measured by X-ray transmission at 59.5 keV giving values from 35 to 50 μm (5%). Optical and atomic force microscopy were performed to the films giving an average grain size of (80±20) μm. Low temperature photoluminescence was performed and peak position and broadness confirmed the high purity of starting materials. Films were characterized by X-ray diffraction, giving an [ΣI (0 0 l)] / [ΣI (h k l)] relation of 0.8 that indicates a strong growth preferred orientation along c axis. Front palladium thermal deposition contacts and acrylic encapsulation were done and apparent resistivity (2 × 1014 Ω. cm) and current density (7 pA/cm2 (30 V)) were obtained. X-ray film response was checked by irradiating with 241Am and an X-ray beam. Finally, film and detector characterizations were correlated with starting material, deposition parameters and previous results for the same and alternative materials like mercuric iodide.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wiestfield, R.L., Hartney, M.A., Street, R.A. and Apte, R.B., Proceedings of SPIE 3336, 444 (1998).Google Scholar
2. Rahn, T.J., Lemmi, F., Lu, J.P., Mei, P., Apte, R.B., Street, R.A., Lujan, R., Wiestfield, R.L. and Heanue, J.A., IEEE Transactions on Nucl. Sci. 46, 3, 457 (1999).CrossRefGoogle Scholar
3. Antonuk, L.E., El-Mohri, Y., Hall, A., Jee, K.W., Maolinbay, M., Nassif, S.C., Rong, X., Siewerdsen, J.H., Zhao, Q. and Weisfield, R.L., Proceedings of SPIE 3336, 2 (1998).CrossRefGoogle Scholar
4. Bennet, P.R., Shah, K.S., Cirignano, L.J., Klugerman, M.B., Moy, L.P. and Squillante, M.R., IEEE Transactions on Nucl. Sci. 46, 3, 266 (1999).CrossRefGoogle Scholar
5. Pulichuk, P., Rougeot, H., Wong, K., Debrie, A., Poliquin, E., Hansroul, M., Martin, J.P., Troung, T.P., Choquette, M., Laperrere, L. and Shukri, Z., Proceedings of SPIE 3659, 417 (1999).Google Scholar
6. Shah, K.S., Bennet, P., Cirignano, L., Dmitriyev, Y., Klugerman, M., Mandal, K., Moy, L.P. and Street, R.A., Mat. Res. Soc. Symp. Proc. 487, 351 (1998).CrossRefGoogle Scholar
7. Street, R.A., Rahn, J.T., Ready, S.E., Shah, K., Bennet, P.R., Dimitriyev, Y., Mei, P., Lu, J.P., Apte, R.B., Ho, J., Schylenbergh, K., Lemmi, F., Boyce, J.B. and Nylen, P., Proceedings of SPIE 3659, 36 (1999).CrossRefGoogle Scholar
8. Shah, K.S., Bennet, P., Dmitriyev, Y., Cirignanno, L., Klugerman, M., Squillante, M.R., Street, R.A., Rahn, J.T. and Ready, S.E., Proceedings of SPIE 3770 (1999) 164.CrossRefGoogle Scholar
9. Schieber, M., Zuck, A., Braiman, M., Melekhov, L., Nissenbaum, J., Turchetta, R., Dulinski, W., Husson, D., Riester, J.L., Schlesinger, T.E., Toney, J., Sanguinetti, S., Montalti, M. and Guzzi, M., Mat. Res. Soc. Symp, Proc. 487, 329 (1998).CrossRefGoogle Scholar
10. Schieber, M., Zuck, A., Melenkhov, L., Shatunovsky, R., Hermon, H. and Turchetta, R., Proceedings of SPIE 3768, 296 (1999).CrossRefGoogle Scholar
11. Schieber, M., Hermon, H., Zuck, A., Vilensky, A., Melekhov, L., Shatunovsky, R., Meerson, E. and Saado, H., Proceedings of SPIE 3770, 146 (1999).CrossRefGoogle Scholar
12. Street, R. A., Mulato, M., Ready, S.E., Lau, R., Ho, J., VanSchuylenbergh, K., Schieber, M., Hermon, H., Zuck, A. and Vilensky, A., Proceedings of SPIE 4142,189 (2000).Google Scholar
13. Fornaro, L., Saucedo, E., Mussio, L., Yerman, L., Ma, X. and Burger, A., Nucl. Instrum. Meth. in Phys. Res. A 458/1–2, 406, (2001).CrossRefGoogle Scholar
14. Iwanczyk, J.S., Patt, B.E., Tull, C.R., Donald, L.R. Mac, Skinner, N., Hoffman, E.J. and Fornaro, L., Presented at the 2000 IEEE NSS-MIC Conference, 2000, Lyon, France.Google Scholar
15. Hubbell, J. H., and Seltzer, S. M., Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest, NISTIR 5632, National Institute of Standards and Technology, USA, 1996.Google Scholar
16. Lund, J.C., Olshner, F. and Burger, A. in Semiconductors for Room Temperature Nuclear Detector Applications, Semiconductors and Semimetals Vol. 43. Edited by Schlesinger, T.E. and James, R.B. (Academic Press, Inc., San Diego, CA, USA, 1995), pags. 445, 98.Google Scholar
17. Ferreira da Silva, A., Veissid, N. and Batista da Silva, A.V., Appl. Phys. Lett. 69 (13), 1930 (1996).CrossRefGoogle Scholar
18. Deich, V. and Roth, M., Nucl. Instr. and Meth. in Phys. Res. A380,169 (1996).CrossRefGoogle Scholar
19. Pfann, W.G. Zone melting. Robert E. Kreiger Publishing, Huntington, NY, 1978.Google Scholar
20. Eckstein, J., Erler, B. and Benz, K., Mat. Res. Bull., 27,537 (1992).CrossRefGoogle Scholar
21. Schlesinger, T.E., James, R. B., Schieber, M., Toney, J., Scyoc, J.M. Van, Salary, L., Hermon, H., Lund, J., Buger, A., Chen, KT, Cross, E., Soria, E., Shah, K., Squillante, M., Yoon, H. and Goorsky, M., Nucl. Instr. and Meth. in Phys. Res. A380, 193 (1996).CrossRefGoogle Scholar
22. , Hermon, James, R.B., Lund, J., Cross, E., Antolak, A., Morse, D.H., Medlin, D.L., Soria, E., Scyoc, J. Van, Brunett, B., Schieber, M., Schlesinger, T.E., Toney, J., Goorsky, M., Yoon, H., Burger, A., Salary, L., Chen, K-T., Y-C. Chang and Shah, K., Mat. Res. Soc. Symp. Proc. 487, 361 (1998).Google Scholar
23. Chen, K-T., Burger, A., Chen, H., Chen, Y-F., Hansen, K., Suber, L., Wilson, S., Henderson, J., Wright, G.W. and Cole, M.L., Mat. Res. Soc. Symp. Proc. 487, 369 (1998).CrossRefGoogle Scholar
24. Lund, J., Shah, K., Squillante, M., Moy, L., Sinclair, F. and Entine, G., Nucl. Instr. and Meth. in Phys. Res. A283, 299 (1989).CrossRefGoogle Scholar
25. “New ways for purifying lead iodide appropriate as spectrometric grade material”, Fornaro, L., Saucedo, E., Mussio, L., Gancharov, A., sent to J. of Mat. Sci., 2001.Google Scholar
26. George, M.A., Azoulay, M., Jayatirtha, H.N., Biao, Y., Burger, A., Collins, W.E. and Silberman, E., J. Crystal Growth 137, 299 (1994).CrossRefGoogle Scholar
27. George, M.A., Chen, K-T., Collins, W.E. and Burger, A., J. Vac. Sci. Technol. B14(2),1096 (1996).CrossRefGoogle Scholar
28. Levy, F., Mercier, A. and Voitchovsky, J-P., Solid State Comm, 15, 819 (1974).CrossRefGoogle Scholar
29. Lund, J.C., Shah, K.S., Olschner, F., Zhang, J., Moy, L., Medrick, S. and Squillante, M.R., Nucl. Instr. and Meth. in Phys. Res. A380, 165 (1992).Google Scholar
30. Olschner, F., Lund, J.C., Shah, K.S., and Squillante, M.R., ICFA Instrum. Bull. 7,9 (1989).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Polycrystalline Lead Iodide Films: Optical, Electrical and X-ray Counting Characterization
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Polycrystalline Lead Iodide Films: Optical, Electrical and X-ray Counting Characterization
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Polycrystalline Lead Iodide Films: Optical, Electrical and X-ray Counting Characterization
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *