Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-fnprw Total loading time: 0.326 Render date: 2022-08-08T20:38:17.447Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Quinone-Decorated Carbon Materials for Capacitive Energy Storage Applications

Published online by Cambridge University Press:  16 December 2014

Mikolaj Meller
Affiliation:
Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Poznan, Poland
Krzysztof Fic
Affiliation:
Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Poznan, Poland
Elzbieta Frackowiak
Affiliation:
Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Poznan, Poland
Get access

Abstract

Quinone/hydroquinone redox couple has been utilized as a source of additional capacitance in typical capacitive energy-storage materials. By generation of functional groups on the carbon electrode surface (grafting) directly from electrolyte there is a possibility to enhance the capacitance value significantly. Hydroxybenzene solutions with different substitution of hydroxyl groups were effectively used for this target. Electrochemical and physicochemical properties of activated carbons have been investigated before and after grafting process.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Roldán, S., Granda, M., Menéndez, R., Santamaría, R. and Blanco, C., J. Phys. Chem. C 115, 1760617611 (2011).10.1021/jp205100vCrossRef
Roldán, S., González, Z., Blanco, C., Granda, M., Menéndez, R. and Santamaría, R., Electrochim. Acta 56, 34013405 (2011).10.1016/j.electacta.2010.10.017CrossRef
Broughton, J. and Brett, M., Electrochim. Acta 49, 44394446 (2004).10.1016/j.electacta.2004.04.035CrossRef
Staiti, P. and Lufrano, F., Electrochim. Acta, 55, 74367442 (2010).10.1016/j.electacta.2010.01.021CrossRef
Peng, C., Jin, J. and Chen, G. Z., Electrochim. Acta 53, 525537 (2007).10.1016/j.electacta.2007.07.004CrossRef
Lota, G., Fic, K. and Frackowiak, E., Electrochem. Commun. 13, 3841 (2011).10.1016/j.elecom.2010.11.007CrossRef
Menzel, J., Fic, K., Meller, M. and Frackowiak, E., J. Appl. Electrochem. 44, 439445 (2014).10.1007/s10800-013-0657-8CrossRef
Frackowiak, E., Fic, K., Meller, M. and Lota, G., ChemSusChem 5, 11811185 (2012).10.1002/cssc.201200227CrossRef
Meller, M., Menzel, J., Fic, K., Gastoł, D., Frackowiak, E., Solid State Ionics 265, 6167 (2014).10.1016/j.ssi.2014.07.014CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Quinone-Decorated Carbon Materials for Capacitive Energy Storage Applications
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Quinone-Decorated Carbon Materials for Capacitive Energy Storage Applications
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Quinone-Decorated Carbon Materials for Capacitive Energy Storage Applications
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *