Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-jzjqj Total loading time: 0.382 Render date: 2022-08-08T10:08:42.109Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

XANES Studies on Eu-doped Fluorozirconate Based Glass Ceramics

Published online by Cambridge University Press:  01 February 2011

Bastian Henke
Affiliation:
bastian.henke@csp.fraunhofer.de, Fraunhofer Center for Silicon Photovoltaics, Halle, Germany
Patrick Keil
Affiliation:
keil@mpie.de, Max-Planck-Institut für Eisenforschung GmbH, Department of Interface Chemistry and Surface Engineering, Düsseldorf, Germany
Christian Pablick
Affiliation:
christian.passlick@physik.uni-halle.de, Martin Luther University of Halle-Wittenberg, Centre for Innovation Competence SiLi-nano(R), Halle, Germany
Dirk Vogel
Affiliation:
vogel@mpie.de, Max-Planck-Institut für Eisenforschung GmbH, Department of Interface Chemistry and Surface Engineering, Düsseldorf, Germany
Michael Rohwerder
Affiliation:
rohwerder@mpie.de, Max-Planck-Institut für Eisenforschung GmbH, Department of Interface Chemistry and Surface Engineering, Düsseldorf, Germany
Marie-Christin Wiegand
Affiliation:
wiegand@physik.uni-paderborn.de, University of Paderborn, Department of Physics, Paderborn, Germany
Jacqueline A. Johnson
Affiliation:
jjohnson@utsi.edu, University of Tennessee Space Institute, Department of Materials Science and Engineering, Tullahoma, Tennessee, United States
Stefan Schweizer
Affiliation:
schweizer@physik.uni-paderborn.de, Fraunhofer Center for Silicon Photovoltaics, Halle, Germany
Get access

Abstract

The influence of adding InF3 as a reducing agent on the oxidation state of Eu in fluoro-chloro- (FCZ) and fluorobromozirconate (FBZ) glass ceramics was investigated using x-ray ab-sorption near edge (XANES) and photoluminescence (PL) spectroscopy. For both materials, it was found that InF3 decreases the Eu2+-to-Eu3+ ratio significantly. PL spectroscopy proved that an annealing step leads to the formation of Eu-doped BaCl2 and BaBr2 nanocrystals in the FCZ and FBZ glasses, respectively. In the case of FCZ glass ceramics the hexagonal phase of BaCl2 could be detected in indium-free and InF3-doped ceramics, but only for InF3 containing FCZ glass ceramics a phase transition of the nanoparticles from hexagonal to orthorhombic structure is observed. For the FBZ glass ceramics, the hexagonal phase of BaBr2 can be formed with and without indium doping, but only in the indium-free case a phase transition to orthorhombic BaBr2 could be found.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chen, G. Johnson, J. A. Woodford, J. and Schweizer, S. Appl. Phys. Lett. 88, 191915 (2006).CrossRefGoogle Scholar
2 Henke, B. Paβlick, C., Keil, P. Johnson, J. A. and Schweizer, S. J. Appl. Phys. 106, 113501 (2009).CrossRefGoogle Scholar
3 Rohler, J. in “Handbook on the Physics and Chemistry of Rare Earths”, edited by Gschneidner, K. A. Jr., Eyring, L. and Hufner, S. (North-Holland, Amsterdam, 1987), vol. 10, pp. 453545.Google Scholar
4 Takahashi, Y. Kolonin, G. R. Shironosova, G. P. Kupriyanova, I. I. Uruga, T. and Shimizu, H. Miner. Mag. 69, 179 (2005).CrossRefGoogle Scholar
5 Antonio, M. R. Soderholm, L. and Song, I. J. Appl. Electrochem. 27, 784 (1997).CrossRefGoogle Scholar
6 Schweizer, S. Hobbs, L. W. Secu, M. Spaeth, J.-M. Edgar, A. Williams, G. V. M. J. Appl. Phys. 97, 083522 (2005).CrossRefGoogle Scholar
7 Edgar, A. Secu, M. Williams, G. V. M. Schweizer, S. and Spaeth, J.-M. J. Phys.: Condens. Matter 13, 62596269 (2001).Google Scholar
8 Parker, J. M. Annu. Rev. Mater. Sci. 19, 21 (1989).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

XANES Studies on Eu-doped Fluorozirconate Based Glass Ceramics
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

XANES Studies on Eu-doped Fluorozirconate Based Glass Ceramics
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

XANES Studies on Eu-doped Fluorozirconate Based Glass Ceramics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *