Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T01:36:29.478Z Has data issue: false hasContentIssue false

Advanced Analytical Microscopy of Engineered Nanoparticle Systems

Published online by Cambridge University Press:  12 July 2019

John Henry J. Scott*
Affiliation:
NIST, Microanalysis Research Group Surface and Microanalysis Science Division Chemical Science and Technology Laboratory, johnhenry.scott@nist.gov
Get access

Abstract

Format

This is a copy of the slides presented at the meeting but not formally written up for the volume.

Abstract

To address the needs of a wide variety of potential application domains, the sophistication and structural complexity of engineered nanoparticle systems has been steadily increasing. Often the unique functionality of these systems depends on the 3-dimensional distribution of multiple phases, ranging from simple coatings to core-shell morphologies to multifunctionalizations for drug delivery. This need for controlled 3-dimensional chemical heterogeneity at the nanoscale presents significant challenges both for the nanomanufacturing of these materials and their metrology and characterization. Even when the nanoparticles have relatively simple structures, the demands of modern process control methodologies and the specifications of end users frequently require increased metrology precision and decreased measurement bias for critical measurands such as coating thicknesses or particle size distributions. Recent advances in electron microscopy and focused ion beam (FIB) technology provide powerful tools for the 3-dimensional structural and elemental characterization of nanomaterials. Dimensional metrology using phase contrast high-resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy (STEM) can measure the physical dimensions of nanostructures at the single nanometer level. Elemental mapping using energy-filtered TEM (EFTEM) can be used to map the spatial distribution of different stoichiometries, while electron tomography can reconstruct the 3-dimensional morphology of nanoparticle assemblies. Examples of the above techniques will be presented along with recent NIST efforts to fuse these techniques into a methodology for 3-dimensional chemical imaging of engineered nanostructures.

Type
Slide Presentations
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)