Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T13:47:07.391Z Has data issue: false hasContentIssue false

Aem Investigation of Tetrahedrally Coordinated TI4+ in Nickel-Titanate Spinel

Published online by Cambridge University Press:  21 February 2011

Ian M. Anderson
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, P.O. Box 2008, M.S. 6376, Oak Ridge, TN 37831-6376 University of Minnesota, Department of Chemical Engineering and Materials Science, 421 Washington Ave. S.E., Minneapolis, MN 55455-0132
Jim Bentley
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, P.O. Box 2008, M.S. 6376, Oak Ridge, TN 37831-6376
C. Barry Carter
Affiliation:
University of Minnesota, Department of Chemical Engineering and Materials Science, 421 Washington Ave. S.E., Minneapolis, MN 55455-0132
Get access

Abstract

The stoichiometry and site distribution of metastable nickel-titanate spinel has been studied with AEM. The results of EDXS and EELS agree that the metastable spinel is nonstoichiometric and titanium-deficient relative to its hypothetical endmember composition, “Ni2TiO4”. The titanium deficiency has been determined by EELS to be Δ = 0.025 ± 0.005. Channeling-enhanced microanalysis and ELNES studies indicate that the Ti4+ and Ni2+ cations are in tetrahedral and octahedral coordination, respectively, so that the metastable spinel has the normal cation distribution: Til−Δ[Ni2(1+Δ)]O4. This result is consistent with neutron powder-diffraction studies and SiO2-solubility measurements of similar equilibrated and quenched spinel-containing specimens. Metastable nickel-titanate spinel therefore contrasts with stable stoichiometric spinels which tend to the inverse cation distribution, Me[MeTi]O4.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Siegel, R. W., Annu. Rev. Mater. Sci. 21, 559578 (1991).Google Scholar
2. Principles of Analytical Electron Microscopy, edited by Joy, D. C., Romig, A. D. Jr., and Goldstein, J. I. (Plenum Press, New York, 1986).Google Scholar
3. Krivanek, O. L., Disko, M. M., Taftø, J., and Spence, J. C. H., Ultramicrosc. 9, 249254 (1982)Google Scholar
4. Spence, J. C. H. and Tafto, J., J. Microsc. 130, 147154 (1983).Google Scholar
5. Laqua, W., Schulz, E. W., and Reuter, B., Z. anorgan. allg. Chem. 433, 167180 (1977).CrossRefGoogle Scholar
6. Muan, A., J. Amer. Ceram. Soc. 75, 13571360 (1992).Google Scholar
7. Anderson, I. M., Ph. D. thesis, Cornell University, 1993.Google Scholar
8. Lager, G. A., Armbruster, T., Ross, F. K., Rotella, F. J., and Jorgensen, J. D., J. Appl. Cryst. 14, 261264 (1981).Google Scholar
9. Roberts, N. F. and Muan, A., J. Amer. Ceram. Soc. 75, 13821389 (1992).Google Scholar
10. Tarte, P., Nature 191, 10021003 (1961).Google Scholar
11. Bland, J. A., Acta Cryst. 14, 875881 (1961).Google Scholar
12. Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed. (John Wiley and Sons, New York, 1976).Google Scholar
13. Spurr, A. R., J. Ultrastr. Res. 26, 3143 (1969).Google Scholar
14. Brydson, R., Sauer, H., and Engel, W., in Transmission Electron Energy Loss Spectrometry in Materials Science, edited by Disko, M. M., Ahn, C. C., and Fultz, B. (The Minerals, Metals, and Materials Society, Warrendale, PA, 1992), pp. 131154.Google Scholar
15. Goldstein, J. I., Williams, D. B., and Cliff, G., in reference (2), pp. 155217.Google Scholar
16. Anderson, I. M., Bentley, J., and Carter, C. B., in preparation.Google Scholar
17. Anderson, I. M., in Proceedings of the 50 Annual Meeting of the Electron Microscopy Society of America, edited by Bailey, G. W., Bentley, J., and Small, J. A. (San Francisco Press, San Francisco, CA, 1992), pp. 12401241.Google Scholar
18. Anderson, I. M., Tietz, L. A., and Carter, C. B., in Structure and Properties of Interfaces in Materials, edited by Clark, W. A. T., Dahmen, U., and Briant, C. L. (Mater. Res. Soc. Proc. 238, Pittsburgh, PA, 1992), pp. 807814.Google Scholar