Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T06:38:42.951Z Has data issue: false hasContentIssue false

γ-Al2O3 Thin Films Catalyst Model Support Preparation on β-NiAl(110) Alloy

Published online by Cambridge University Press:  31 January 2011

Zhongfan Zhang
Affiliation:
zhz33@pitt.edu, University of Pittsburgh, Mechanical Engineering and Materials Science, Pittsburgh, Pennsylvania, United States
Long Li
Affiliation:
lil2@pitt.edu, University of Pittsburgh, Mechanical Engineering and Materials Science, Pittsburgh, Pennsylvania, United States
Malay Shah
Affiliation:
mds47@pitt.edu, University of Pittsburgh, Mechanical Engineering and Materials Science, Pittsburgh, Pennsylvania, United States
Jianguo Wen
Affiliation:
wen@mrl.uiuc.edu, University of Illinois at Urbana-Champaign, Frederick Seitz Materials Research Laboratory, Urbana, Illinois, United States
Judith C Yang
Affiliation:
judyyang@pitt.edu, University of Pittsburgh, Mechanical Engineering and Materials Science, Pittsburgh, Pennsylvania, United States
Get access

Abstract

Low temperature oxidation of NiAl(110) alloy has been studied with surface characterization methods and cross-section TEM. Our work demonstrated thin and high quality single crystal γ-Al2O3(111) films have grown heteroepitaxially on NiAl(110) alloy. The orientation relationship of metal/oxide is NiAl(110) || γ-A12O3(111)and NiAl(211)∥γ-Al2O3(311) with very slight lattice mismatch. Al cation outward diffusion dominates during this low temperature oxidation confirmed by EELS mapping along interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Trueba, Monica and Trasatti, Stefano P., European Journal of Inorganic Chemistry 2005, 33933403 (2005).Google Scholar
2 Arai, H. and Machida, M., Catalysis Today 10, 8194 (1991).Google Scholar
3 Lay, M. Y. Thi Thi, and Mebarki, B., J. Vac. Sci. Technol. 20, 2027 (2002).Google Scholar
4 Fre'my, V. M. Nicolas, and Marcus, Philippe, J. Am. Ceram. Soc. 86, 669675 (2003).Google Scholar
5 Wu, S. Y., Hong, M., Kortan, A. R., Kwo, J., Mannaerts, J. P., Lee, W. C. and Huang, Y. L., Applied Physics Letters 87, 091908–091903 (2005).Google Scholar
6 Ertl, G., Catalysis Reviews: Science and Engineering 21, 201223 (1980).Google Scholar
7 Campbell, C. T., Surface Science Reports 27, 1111 (1997).Google Scholar
8 Rybicki, G. C. and Smialek, J. L., Oxidation of Metals 31, 275304 (1989).Google Scholar
9 Doychak, M. R. J., Oxidation of Metals 31, 431452 (1989).Google Scholar
10 Brumm, M. W. and Grabke, H. J., Corrosion Science 33, 16771690 (1992).Google Scholar
11 Jaeger, R. M., Kuhlenbeck, H., Freund, H. J., Wuttig, M., Hoffmann, W., Franchy, R. and Ibach, H., Surface Science 259, 235252 (1991).Google Scholar
12 Grabke, H. J., Intermetallics 7, 11531158 (1999).Google Scholar
13 Yang, J.C., Acta.Mater 46, 21952201 (1998).Google Scholar
14 Pint, B. A., Martin, J. R. and Hobbs, L. W., Solid State Ionics 78, 99107 (1995).Google Scholar