Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T21:36:44.895Z Has data issue: false hasContentIssue false

Aligned-Crystalline Si Films on Non-Single-Crystalline Substrates

Published online by Cambridge University Press:  01 February 2011

Alp Findikoglu
Affiliation:
findik@lanl.gov, Los Alamos National Laboratory, MPA-STC, Los Alamos, New Mexico, United States
Terry G. Holesinger
Affiliation:
holesinger@lanl.gov, Los Alamos National Laboratory, MPA-STC, Los Alamos, New Mexico, United States
Alyson Niemeyer
Affiliation:
niemeyer@lanl.gov, Los Alamos National Laboratory, T-1, Los Alamos, New Mexico, United States
Vladimir Matias
Affiliation:
vlado@lanl.gov, Los Alamos National Laboratory, MPA-STC, Los Alamos, New Mexico, United States
Ozan Ugurlu
Affiliation:
ozan@umn.edu, Characterization Facility, Institute of Technology, 55 Shepherd Laboratories, Minneapolis, Minnesota, United States
Get access

Abstract

We summarize recent progress in growth and characterization of aligned-crystalline silicon (ACSi) films on polycrystalline metal and amorphous glass substrates. The ACSi deposition process uses, as a key technique, ion-beam-assisted deposition (IBAD) texturing on a non-single-crystalline substrate to achieve a biaxially-oriented (i.e., with preferred out-of-plane and in-plane crystallographic orientations) IBAD seed layer, upon which homo- and hetero-epitaxial buffer layers and hetero-epitaxial silicon (i.e., ACSi) films with good electronic properties can be grown. We have demonstrated the versatility of our approach by preparing ACSi films on customized architectures, including fully insulating and transparent IBAD layer and buffer layers based on oxides on glass and flexible metal tape, and conducting and reflective IBAD layer and buffer layers based on nitrides on flexible metal tape. Optimized 0.4-μm-thick ACSi films demonstrate out-of-plane and in-plane mosaic spreads of 0.8° and 1.3°, respectively, and a room-temperature Hall mobility of ∼90 cm2/V.s (∼50% of what is achievable with epitaxial single-crystalline Si films, and ∼1000 times that of amorphous Si films) for a p-type doping concentration of ∼4×1016 cm−3. By using various experimental techniques, we have confirmed the underlying crystalline order and the superior electrical characteristics of low-angle (<5°) grain boundaries in ACSi films. Forming gas anneal experiments indicate that Si films with low-angle grain boundaries do not need to be passivated to demonstrate improved majority carrier transport properties. Measurements on metal-insulator-semiconductor structures using ACSi films yield near-electronic-grade surface properties and low surface defect densities in the ACSi films. A prototype n+/p/p+–type diode fabricated using a 4.2-μm-thick ACSi film shows minority carrier lifetime of ∼3 μs, an estimated diffusion length of ∼30 μm in the p-Si layer with a doping concentration of 5×1016 cm−3, and external quantum efficiency of ∼80% at 450 nm with the addition of an MgO film anti-reflector.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arendit, P.N, Foltyn, S.R., Mater.Res. Soc.Bull. 29, 543 (2004).Google Scholar
2. Lijima, Y., Kakimoto, K., sutoh, Y., Ajimura, S., Saitoh, T. Supercond.Sci Tech. 17, 264 Google Scholar
3. Wang, C. P., Do, K. B., Beasley, M. R., Geballe, T. H., Hammond, R. H., Appl. Phys. Lett. 71, 2955 (1997)Google Scholar
4. Findikoglu, A. T., Kreiskott, S., te Riele, P. M., and Matias, V., J. Mater. Res. 19, 501 (2004).Google Scholar
5. Dong, L., Srolovitz, D. J., Was, G. S., Zhao, Q., and Rollett, A. D., J. Mater. Res. 16, 210 (2001).Google Scholar
6. Dong, L., Zepeta-Ruiz, L. A., Srolovitz, D. J., J. Appl. Phys. 89, 4105 (2001).Google Scholar
7. Findikoglu, A. T., Choi, W., Matias, V., Holesinger, T. G., Jia, Q. X., Peterson, D. E., Adv.Mater. 17, 1527 (2005).Google Scholar
8. Choi, W., Lee, J. K., Findikoglu, A. T., Appl. Phys. Lett. 89, 262111 (2006).Google Scholar
9. Choi, W., Findikoglu, A. T., Romero, M. J., Al-Jassim, M., JMR 22, 821 (2007).Google Scholar
10. Findikoglu, A. T., Choi, W., Hawley, M., Romero, M. J., Jones, K. M., Al-Jassim, M. M., in Progress in Advanced Materials Research (Ed: Voler, N. H., Nova Science Publishers, Hauppauge, New York, 2007), Ch. 6.Google Scholar
11. Findikoglu, A. T., Ugurlu, O., and holesinger, T. G., Mater.Res. Soc. Symp. Proc. 1066 (in press).Google Scholar
12. Yamamoto, K., IEEE Trans. Electron Dev. 46, 2041 (1999).Google Scholar
13. Aberle, A. G., Widenborg, P. I., Song, D., Straub, A., Terry, M. L., Walsh, T., Sproul, A., Campbell, P., Inns, D., Beilby, B., Griffin, M., Weber, J., Huang, Y., Kunz, O., Gebs, R., Martin-Brune, F., Barroux, V., Wenham, S. H., “Recent Advances in Polycrystalline Silicon Thin-Film Solar Cells on Glass at UNSW”, presented at Thirty-First IEEE Photovoltaic Specialists Conference (Lake Buena Vista, FL, USA, 2005).Google Scholar
14. Werner, J. H., Dassow, R., Rinke, T. J., Kohler, J. R., Bergmann, R. B., Thin Sol. Films 383, 95 (2001)Google Scholar
15. Teplin, C. W., Ginley, D. S., Branz, H. M., J.Non-Cryst.Solids 352, 984 (2006).Google Scholar
16. Lin, J. F., Li, S. S., Linares, L. C., Teng, K. W., Solid State Electron. 24, 827 (1981).Google Scholar
17. Sze, S. M., Physics of Semiconductor Devices (Wiley-Interscience, New York, 1981).Google Scholar
18. Toshiharu, S., J. Appl. Phys. 99, 11 (2006).Google Scholar
19. Haji, L., Joubert, P., Stoemenos, J., Economou, N. A., J. Appl. Phys. 75, 3944 (1994).Google Scholar
20. Bergmann, R. B., Kohler, J., Dassow, R., Zaczek, C., Werner, J. H., Physica Status Solidi A166, 587 (1998)Google Scholar
21. Im, J. S., Sposili, R. S., Crowder, M. A., Appl. Phys. Lett. 70, 3434 (1997).Google Scholar
22. Tai, M., Hatano, M., Yamaguchi, S., Noda, T., Park, S. K., Shiba, T., Ohkura, M., IEEE Trans Electron. Devices 51, 934 (2004).Google Scholar