Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T23:41:08.360Z Has data issue: false hasContentIssue false

Alumina Extraction from Mexican Fly Ash

Published online by Cambridge University Press:  01 February 2011

Jorge López-Cuevas
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Ramos Arizpe, 25900 Coah., México
David Long-González
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Ramos Arizpe, 25900 Coah., México
Carlos A. Gutiérrez-Chavarría
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Ramos Arizpe, 25900 Coah., México
José L. Rodríguez-Galicia
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Ramos Arizpe, 25900 Coah., México
Martín I. Pech-Canul
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Ramos Arizpe, 25900 Coah., México
Get access

Abstract

Two alternative chemical methods are studied for the extraction of Al2O3 from Mexican Fly Ash (FA). Reaction of FA with H2SO4 at high temperature allows extracting ∼37% of the total Al2O3 contained in the FA as Al2(SO4)3, regardless of H2SO4 concentration, treatment time and temperature employed. This is partly due to the high chemical resistance of mullite (Al6Si2O13) contained in the FA. In contrast, reaction of FA with a CaCO3-Na2CO3 mixture at 1300°C/1h, followed by lixiviation with a Na2CO3 aqueous solution and precipitation of bohemite [AlO(OH)] by addition of either H2O2 or NH4HCO3, allows extracting ∼80% of the total Al2O3 contained in the FA as θ-alumina, after calcination of bohemite at 1200°C/1h.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ferguson, G. Geotechnical Special Publication No. 36, ASCE, New York, N.Y. (1993).Google Scholar
2. Mireles-Álvarez, R., M. Sc. Thesis, Instituto Tecnológico de Saltillo, Coahuila, México (2004).Google Scholar
3. Gomes, S. and François, M., Cem. Concr. Res. 30, 175 (2000).Google Scholar
4. Kang, H.K., Park, S.S., Son, M.M., Lee, H.S., and Park, H.C., Brit. Ceram. Trans. 99, 26 (2000).Google Scholar
5. Park, S.S., Hwang, E.H., Kim, B.C., and Park, H.C., J. Am. Ceram. Soc. 83, 1341 (2000).Google Scholar
6. Rayzman, V.L., Shcherban, S.A., and Dworkin, R.S., Energy & Fuels 11, 761 (1997).Google Scholar
7. Padilla, R. and Sohn, H.Y., Metall. Trans. B 16B, 385 (1985).Google Scholar
8. Lin, C.F., and His, H.C., Environ. Sci. Technol. 29, 1109 (1995).Google Scholar
9. Querol, X., Umaña, J.C., Plana, F., Alastuey, A. and Soler, A.L., Fuel 80, 857 (2001).Google Scholar
10. Hollman, G.G., Steenbruggen, G. and Jurkovicova, M.J., Fuel 78, 1225 (1999).Google Scholar
11. ASTM C618, Annual Book of ASTM Standards, Vol. 04.01, D 3987–85 (1992).Google Scholar
12. Barbieri, L., Lancelloti, I., Manfredini, T., Queralt, I., Rincon, J.M., and Romero, M. Fuel 78, 271 (1999).Google Scholar
13. Verbaan, B. and Louw, G.K.E., Hydrometallurgy 21, 305 (1989).Google Scholar
14. Seidel, A. and Zimmels, Y. Chem. Eng. Sci. 53, 3835 (1998).Google Scholar
15. Seidel, A., Sluszny, A., Shelef, G. and Zimmels, Y. Chem. Eng. J. 72, 195 (1999).Google Scholar