Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T19:06:00.260Z Has data issue: false hasContentIssue false

Analysis of Magnetization Processes in Nanocomposite Hard Magnetic Materials from Macroscopic Magnetic Measurements and X-RAY Magnetic Circular Dichroism

Published online by Cambridge University Press:  21 February 2011

Stéphane David
Affiliation:
Laboratoire Louis Néel-CNRS, BP 166, 38042 Grenoble Cedex 9, Francedavid@labs.polycnrs-gre.fr
Kenneth Mackay
Affiliation:
Laboratoire Louis Néel-CNRS, BP 166, 38042 Grenoble Cedex 9, France
Marlio Bonfim
Affiliation:
Laboratoire Louis Néel-CNRS, BP 166, 38042 Grenoble Cedex 9, France
Stefania Pizzii
Affiliation:
Laboratoire Louis Néel-CNRS, BP 166, 38042 Grenoble Cedex 9, France
Alain Fontaine
Affiliation:
Laboratoire Louis Néel-CNRS, BP 166, 38042 Grenoble Cedex 9, France
Dominique Givord
Affiliation:
Laboratoire Louis Néel-CNRS, BP 166, 38042 Grenoble Cedex 9, France
Get access

Abstract

A series of RExTMbalBy (3≤x≤5.5, 15≤y≤25 at%) nanocomposite magnets were prepared using the classical method of alloy rapid quenching and subsequent devitrification. Appropriate elemental additions and substitutions allowed the technical magnetic properties to be optimized. The analysis of the both hysteresis cycles and static susceptibility measurements in the range 20K-300K reveals that magnetization reversal in these materials can be interpreted schematically as a two-step process : the initial magnetization reversal is dominated by reversible processes while irreversible processes, which characterize the coercivity mechanism, occur at larger field values. To complement this study, X-Ray Magnetic Circular Dichroism (XMCD) spectroscopy was applied as an element-selective probe of magnetization reversal in nanocomposite samples. This allowed the hysteresis cycles of both hard and soft phases to be separated from the total cycle. Magnetization processes in these bulk heterogeneous systems are discussed in the light of information brought by the complementary applied experimental techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Coehoorn, R., Mooij, D.B. de, Duchateau, J.P.W.B., Bushow, K.H.J., J. de Phys 49–C8,669 (1988); R. Coehoorn, D.B. de Mooij, C. de Waard, J. Magn. Magn. Mater. 80, 101 (1989).Google Scholar
2. Manaf, A., Buckley, R.A., Davies, H.A., J. Magn.Magn.Mater. 128, 302 (1993); H. A. Davies, J. Magn. Magn. Mater. 157/158, 11 (1996).Google Scholar
3. Ding, J., Liu, Y., McCormick, P.G., Street, R., J. Magn. Magn. Mater 123, L239 (1993).Google Scholar
4. O'Donnell, K., Kuhrt, C., Coey, J.M.D., J. Appl. Phys. 76 (10), 7068 (1994).Google Scholar
5. Smith, P., O'Sullivan, J.F., Coey, J.M.D., in Proceedings of the 15th International Symposium on Rare-Earth Magnets and their Applications, Dresden 1998, Vol.1, WerkstoffInformationgeseilschaft, Francfort, L. Schutz & K.H. Miuller editors, 205 (1998).Google Scholar
6. Archambault, V., Peré, D., these Proceedings.Google Scholar
7. Bernardi, J. et al. , submitted to J. Magn. Magn. Mater. (1999).Google Scholar
8. David, S., Raphel, R., Givord, D. (unpublished).Google Scholar
9. Khan, Y., Phys. Stat. Sol. (a) 122, K1 (1990).Google Scholar
10. Hinomura, T., Nasu, S., Kanekiyo, H., Hirosawa, S., J. Japan. Inst. Metals, 61-n'2, 184 (1997)Google Scholar
11. Kissinger, H.E., Analyt. Chem. 29, 1702 (1957).Google Scholar
12. David, S., PhD. Thesis, Université Joseph Fourier, Grenoble Gune 1999).Google Scholar
13. The invaluable help of J. Bernardi and J. Fidler from IATP at TUWien in TEM characterization is gratefully acknowledged.Google Scholar
14. Bernardi, J., David, S., Soto, G.F., Fidler, J., Givord, D., J. Appl. Phys. 85 (8), 5905 (1999).Google Scholar
15. Li, Z.W., Zhou, X.Z., Morrish, A.H., Hyperfine Interactions 72, 111 (1992).Google Scholar
16. Hirosawa, S.;Google Scholar
17. Sano, N., Tomida, T., Hirosawa, S., Hueara, M., Kanekiyo, H., Mater. Sci.& Eng. A250, 146 (1998).Google Scholar
18. Suzuki, K., Cadogan, J.M., Uehara, M., Hirosawa, S., Kanekiyo, H., J. Appl. Phys., 85 (8), 5914 (1999)Google Scholar
19. Pareti, L., Bolzoni, F., Solzi, M., J. of Less-Com. Met. 132, L5 (1987).Google Scholar
20. Hono, K., Li, J.-L., Ueki, Y., Inoue, A., Sakurai, T., Appl. Surf. Science 67, 398 (1993).Google Scholar
21. David, S., Givord, D., J. Alloys compd. 281, 6 (1998)Google Scholar
22. Stöhr, J., Wu, Y., New Directions in Research with 3rd Generation Soft X-Ray Synchrotron Radiation Sources, NATO Advanced Study Institute (Kluwer Academic Publishers, Dordrecht, 1993).Google Scholar
23. Thole, B.T., Carra, P., Sette, F., Laan, G. Van der, Phys. Rev. Lett. 68, 1943 (1992).Google Scholar
24. Pizzini, S., Bonfin, M., Baudelet, F., Tolentino, H., Miguel, A. San, MacKay, K., Malgrange, C., Hagelstein, H. J. Synchrotr. Rad. 5, 1298 (1998).Google Scholar
25. Kneller, E. and Hawig, R., IEEE Trans. Mag. 27, 3588 (1991)Google Scholar
26. David, S., MacKay, K., Bonfim, M., Pizzini, S., Fontaine, A., Givord, D., (Submitted)Google Scholar