Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-18T07:24:24.151Z Has data issue: false hasContentIssue false

Anatase TiO2 Nanowires, Thin Films, and Surfaces: Ab initio Studies of Electronic Properties and Non-adiabatic Excited State Dynamics

Published online by Cambridge University Press:  31 March 2014

Shuping Huang
Affiliation:
Department of Chemistry, University of South Dakota, Vermillion, U.S.A.
Dmitri S. Kilin*
Affiliation:
Department of Chemistry, University of South Dakota, Vermillion, U.S.A.
*
*Corresponding author. Email: Dmitri.Kilin@usd.edu
Get access

Abstract

We analyze and compare optoelectronic properties and hot carrier relaxation dynamics in different forms of TiO2 anatase materials: nanowires and thin films. The models are chosen in such way that the same crystallographic surfaces are exposed and any difference in properties is attributed to the change of the dimensionality of the nanostructure. Specifically, we give a brief review of the electronic properties and non-adiabatic excited state dynamics of <001> anatase TiO2 nanowire as well as (100) and (001) anatase TiO2 surfaces. The calculated band gap of nanowire is larger than the ones of surfaces. The hole relaxation rate is higher than the electron relaxation rate for both the surfaces and nanowire, and the electron and hole relaxation rates of surfaces are larger than the ones of nanowire.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, X. and Mao, S. S., Chem. Rev. 107, 2891 (2007), and references therein.CrossRefGoogle Scholar
Jiu, J., Isoda, S., Wang, F., and Adachi, M., J. Phys. Chem. B 110, 2087 (2006).CrossRefGoogle Scholar
Cozzoli, P. D., Comparelli, R., Fanizza, E., Lucia, M., Agostiano, A., and Laub, D., J. Am. Chem. Soc. 126, 3868 (2004).CrossRefGoogle Scholar
Diebold, U., Surf. Sci. Rep. 48, 53 (2003).CrossRefGoogle Scholar
Lazzeri, M., Vittadini, A., and Selloni, A., Phys. Rev. B 63, 155409 (2001).CrossRefGoogle Scholar
Hwang, Y. J., Hahn, C., Liu, B., and Yang, P. D., ACS Nano 6, 5060 (2012).CrossRefGoogle Scholar
Meng, S., Ren, J., and Kaxiras, E., Nano Lett. 8, 3266 (2008).CrossRefGoogle Scholar
Deak, P., Aradi, B., Gagiardi, A., Huy, H. A., Penazzi, G., Yan, B. H., Wehling, T., and Frauenheim, T., Nano Lett. 13, 1073 (2013).CrossRefGoogle Scholar
Tan, B. and Wu, Y. Y., J. Phys. Chem. B 110, 15932 (2006).CrossRefGoogle Scholar
Zhu, K., Neale, N. R., Miedaner, A., and Frank, A. J., Nano Lett. 7, 69 (2007).CrossRefGoogle Scholar
Egorova, D., Thoss, M., Domcke, W., and Wang, H., J. Chem. Phys. 119, 2761 (2003).CrossRefGoogle Scholar
Jensen, S. and Kilin, D., in Nanotechnology for Sustainable Energy, edited byHu, Y.H., Burghaus, U., and Qiao, S. (American Chemical Society, Washington, DC, 2013), Vol. 1140, Chap. 8, pp. 187218.CrossRefGoogle Scholar
Zhang, Y. C., Qiu, C., and Kilin, D. S., Mol. Phys. 112, 441 (2013).CrossRefGoogle Scholar
Huang, S. P. and Kilin, D. S., Mol. Phys. 112, 539 (2013).CrossRefGoogle Scholar
Law, J. B. K. and Thong, J. T. L., Nanotechnology 19, 205502 (2008).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).CrossRefGoogle Scholar
Kilin, D. S. and Micha, D. A., J. Phys. Chem. Lett. 1, 1073 (2010).CrossRefGoogle Scholar
Chu, I.-H., Kilin, D. S., and Chen, H.-P., J. Phys. Chem. C 117, 17909 (2013).CrossRefGoogle Scholar