Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T13:57:16.574Z Has data issue: false hasContentIssue false

A-Si:H Ambipolar Diffusion Length and Effective Lifetime Measured by Flying Spot Technique (FST)

Published online by Cambridge University Press:  21 February 2011

M. Vieira
Affiliation:
Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa Quinta da Torre, 2825 Monte da Caparica, Portugal.
R. Martins
Affiliation:
Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa Quinta da Torre, 2825 Monte da Caparica, Portugal.
E. Fortunato
Affiliation:
Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa Quinta da Torre, 2825 Monte da Caparica, Portugal.
F. Soares
Affiliation:
Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa Quinta da Torre, 2825 Monte da Caparica, Portugal.
L. Guimaraes
Affiliation:
Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa Quinta da Torre, 2825 Monte da Caparica, Portugal.
Get access

Abstract

The determination of the ambipolar diffusion length, L*, and the effective lifetime, τ*, in p/i and a-Si:H Schottky barriers (ITO/p/a-Si:H/Al-Si; Cr/a-Si:H/Cr/Ag) have been determined by Flying Spot Technique, FST. This technique consists in the transient analysis of the photocurrent/photopotential induced by a laser beam that moves perpendicularly to the structure with a constant motion ratio, at different velocities. Taking into account the competition between the diffusion/drift velocities of the excess carriers and the velocity of the flying spot, it is possible to solve the transport equations and to compute separately L* and τ*, from the asymmetrical distribution responses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Moore, A.R., Appl Phy Letters 40, 403 (1982).Google Scholar
[2] Moore, A.R., J. Appl Phy 56, 2796 (1984).Google Scholar
[3] Ritter, D., Zeldov, E., Appl Phy Letters 49, 79 (1986).CrossRefGoogle Scholar
[4] Ritter, D., Weiser, K. and Zeldov, E., J. Appl Phy 62, 4563 (1987) (Acad. Press, New York, 1980).CrossRefGoogle Scholar
[5] Torkel Wallmark, J., Proc. of IRE 45, 474,(1957).Google Scholar
[6] Vieira, M., Martins, R., Fortunato, E. and Guimaraes, L., 10thPVSEC, Lisboa, 1991.Google Scholar
[7] Hecht, K., Z. Physik 77, 235 (1932).Google Scholar
[8] Martins, R., Vieira, M., Fortunato, E., Ferreira, I., Soares, F. and Guimaraes, L., presented at the MRS Spring Meeting, S. Francisco (1990).Google Scholar
[9] Fortunato, E., Martins, R., Vieira, M., and Guimaraes, L., 10thEPVSEC, Lisboa, 1991.Google Scholar