Skip to main content Accessibility help

Atomic Layer Deposition of Metal Oxide Films on GaAs (100) surfaces

  • Theodosia Gougousi (a1), John W. Lacis (a2), Justin C Hackley (a3) and John Demaree (a4)


Atomic Layer Deposition is used to deposit HfO2 and TiO2 films on GaAs (100) native oxides and etched surfaces. For the deposition of HfO2 films two different but similar ALD chemistries are used: i) tetrakis dimethyl amido hafnium (TDMAHf) and H2O at 275°C and ii) tetrakis ethylmethyl amido hafnium (TEMAHf) and H2O at 250°C. TiO2 films are deposited from tetrakis dimethyl amido titanium (TDMATi) and H2O at 200°C. Rutherford Back Scattering shows linear film growth for all processes. The film/substrate interface is examined using x-ray Photoelectron Spectroscopy and confirms the presence of an “interfacial cleaning” mechanism.



Hide All
1 Wilk, G.D., Wallace, R.M., Anthony, J.M., J. Appl. Phys. 89, 5243 (2001).
2 de Almeida, R. M.C. and Baumvol, I.J.R., Surface Science Reports 49, 1, (2003).
3 Robertson, J. and Falabretti, B., J. Appl. Phys. 100, 014111 (2006).
4 Lin, H.C., Yang, T., Sharifi, H., Kim, S.K., Xuan, Y., Shen, T., Mohammadi, S., and Ye, P.D. Appl. Phys. Lett. 91 (21) 212101 (2007).
5 Ye, P. D., Wilk, G. D., Yang, B., Kwo, J., G. Chu, S. N., Nakahara, S., Gossmann, H.-J. L., Mannaerts, J. P., Hong, M., Ng, K. K., and Bude, J. Appl. Phys. Lett. 83, 180 (2003).
6 Frank, M. M., Wilk, G. D., Starodub, D., Gustafsson, T., Garfunkel, E., .Chabal, Y. J. Grazul, J. and Muller, D. A. Appl. Phys. Lett. 86, 152904 (2005).
7 Huang, M. L., Chang, Y. C., Chang, C. H., Lee, Y. J., Chang, P., Kwo, J.,Wu, T. B. and Hong, M., Appl. Phys. Lett. 87, 252104 (2005).
8 Chang, C.-H., Chiou, Y.-K., Chang, Y.-C., Lee, K.-Y., Lin, T.-D., Wu, T.-B., Hong, M., and Kwo, J., Appl. Phys. Lett. 89, 242911 (2006).
9 Hinkle, C. L., Sonnet, A. M., Vogel, E. M., McDonnell, S., Hughes, G. J., Milojevic, M., Lee, B., Aguirre-Tostado, F. S., Choi, K. J., Kim, H. C., Kim, J., and Wallace, R. M., Appl. Phys. Lett. 92, 071901 (2008).
10 Chang, Y. C., Huang, M. L., Lee, K. Y., Lee, Y. J., Lin, T. D., Hong, M., Kwo, J., Lay, T. S., Liao, C. C., and Cheng, K.Y., Appl. Phys. Lett. 92, 072901 (2008).
11 Hackley, J.C., Demaree, J.D., and Gougousi, T., Appl. Phys. Lett. 92(16), 162902 (2008).
12 Shahrjerdi, D., Garcia-Gutierrez, D. I., Tutuc, E., and Banerjee, S. K., Appl. Phys. Lett. 92 (22), 223501, (2008).
13 Hackley, J.C., Gougousi, T., Demaree, J.D., J. Appl. Phys. 102, 034101 (2007).
14 Surdu-Bob, C.C., Saied, S.O., Sullivan, J.L., Appl. Surf. Sci. 183, 126 (2001).
15 Doolittle, L. R., Nucl. Instrum. Meth. B15, 227 (1986).
16 Hackley, J.C., Demaree, J.D., and Gougousi, T., J. Vac. Sci. Technol. A 25(5), 1235 (2008).
17 Marx, D., Asahi, H. Liu, X.F., Higashiwaki, M., Villaflor, A.B., Miki, K.,Yamamoto, K., Gonda, S., Shimomura, S., Hiyamizu, S. J. Crystal Growth 150, 155 (1995).
18 Asahi, H. Liu, X.F., Inoue, K., Marx, D., Asami, K., Miki, K., Gonda, S., J. Crystal Growth 145, 688 (1994).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed