Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T17:06:55.639Z Has data issue: false hasContentIssue false

Atomistic Simulations of the Silicon Surface Structure at the Interface of Silver Thick Film Contacts on n-Type Silicon

Published online by Cambridge University Press:  20 June 2011

Stefan Kontermann
Affiliation:
Fraunhofer Heinrich Hertz Institute, Am Stollen 19, 38640 Goslar, Germany
Alexander Ruf
Affiliation:
Fraunhofer Institute for Physical Measurement Techniques, Heidenhofstr. 8, 79110 Freiburg, Germany
Ralf Preu
Affiliation:
Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110 Freiburg, Germany
Get access

Abstract

Nanoscale silver crystals at the interface of silver thick film contacts on n-type silicon carry the current across the contact and therefore control the contact resistance, which is a main performance limiting parameter for semiconductor devices. The silver crystals are located in pits at the silicon surface. The shape of the pits is different on Si-(111) and Si-(100). During contact formation, these pits form before the silver crystals. Hence they determine the crystal size and shape. Consequently, the pits with the crystals influence the contact resistance. We investigate these pits experimentally by scanning electron microscopy. We are the first to simulate the mechanism of pit formation at a contact interface by considering a model that is based on the removal probability of silicon surface atoms. This model leads to good agreement between experimental and simulated data. It enables the prediction of pit formation for arbitrary process parameters like temperature and duration for silver thick film contact formation on silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schottky, W., Z. Phy. 113, 367 (1939).Google Scholar
2. Schottky, W., Z. Phy. 118, 539 (1941).Google Scholar
3. Schroder, D. K., Meier, D. L., IEEE Trans. Electron Devices ED-31, 637 (1984).Google Scholar
4. Hirshman, W. P., Schmela, M., Photon International 3, 100 (2006).Google Scholar
5. Nijs, J. F., Szlufcik, J., Poortmans, J., Sivoththaman, S., Mertens, R. P., IEEE Trans. Electron Devices ED-46, 1948 (1999).Google Scholar
6. Ballif, C., Huljic, D. M., Willeke, G., Hessler-Wyser, A., Appl. Phys. Lett. 82, 1878 (2003).Google Scholar
7. Huljic, D. M., Ballif, C, Hessler-Wyser, A., Willeke, G., Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan (2003), pp. 83-86.Google Scholar
8. Schubert, G., Ph. D. thesis, University of Konstanz, Germany, 2006.Google Scholar
9. Kontermann, S., Hörteis, M., Kasemann, M., Grohe, A., Preu, R., Pink, E., Trupke, T., Sol. Mat. 93, 1630 (2009).Google Scholar
10. Schubert, G., Huster, F., Fath, P., Proceedingsof the 19th European Photovoltaic Solar Energy Conference, Paris, France (2004), pp. 813-816.Google Scholar
11. Kontermann, S., Bauer, J., Willeke, G., App Phys Lett 97, 191910 (2010).Google Scholar
12. Kontermann, S., PhD thesis, University of Konstanz, Germany, 2009.Google Scholar
13. Gosalvez, M. A., Foster, A. S., Nieminen, R.M., Appl. Surf. Sci. 202, 160 (2002).Google Scholar
14. Gosalvez, M. A., Nieminen, R.M., New J. Phys. 5, 100.1 (2003).Google Scholar
15. Gosalvez, M. A, Foster, A., Nieminen, R., Europhys. Lett. 60, 467 (2002).Google Scholar
16. Allongue, P., Costa-Kieling, V., Gerischer, H., J. Electrochem. Soc. 140, 1018 (1993).Google Scholar
17. Kontermann, S., Ruf, A., Preu, R., accepted for publication in Energy Procedia (2011).Google Scholar
18. Allongue, P., Brune, H., Gerischer, H., Surf. Sci. 275, 414 (1992).Google Scholar
19. Palik, E. D., Faust, J. W., Gray, H. F., Greene, R. F., J. Electrochem. Soc. 129, 2051 (1982).Google Scholar
20. Jackson, T. N., Tischler, M. A., Wise, K. D., IEEE Electron Device Lett. 2, 44 (1981).Google Scholar
21. Pysch, D., Mette, A., Filipovic, A., Glunz, S. W., Prog. Photovolt. 17, 101 (2008).Google Scholar