Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T08:25:41.076Z Has data issue: false hasContentIssue false

Au/Ge/Pd Ohmic Contacts to n-TYPE InP

Published online by Cambridge University Press:  25 February 2011

Ping Jian
Affiliation:
Department of Mining, Metallurgical and Petroleum Engineering, University of Alberta, Edmonton, Alberta, Canada, T6G 2G6
Douglas G. Ivey
Affiliation:
Department of Mining, Metallurgical and Petroleum Engineering, University of Alberta, Edmonton, Alberta, Canada, T6G 2G6
Robert Bruce
Affiliation:
Bell Northern Research, Ltd., P. O. Box 3511, Station C, Ottawa, Ontario, Canada, KIY 4H7
Gordon Knight
Affiliation:
Bell Northern Research, Ltd., P. O. Box 3511, Station C, Ottawa, Ontario, Canada, KIY 4H7
Get access

Abstract

Ohmic contact formation and thermal stability in a Au/Ge/Pd metallization to n-type InP, doped to a level of 1017 cm-3, have been investigated. Contact resistance was measured using a transmission line method, while microstructural changes were examined by means of TEM, EDX, CBED and SAD. Contacts became ohmic after annealing at temperatures ranging from 300°C to 375°C. A minimum contact resistance of 2.5×l0-6 Ω-cm2 was obtained after annealing at 350°C for 320s. The drop in resistance to ohmic behavior corresponded to the decomposition of an epitaxial quaternary phase (Au-Ge-Pd-P). Annealing at 400°C and above resulted in Au10In3 spiking into InP and a break down of contact lateral uniformity, which increased contact resistance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Shih, Y. C., Murakami, M., Wilkie, E. L. and Callegari, A. C., J. Appl. Phys. 62, 582 (1987).CrossRefGoogle Scholar
[2] Lin, C. and Lee, C. P., J. Appl. Phys. 67, 260 (1990).CrossRefGoogle Scholar
[3] Ren, F., Fullowan, T. R., Chu, S. N. G., Pearton, S.J., Hobson, W. S. and Emerson, A. B., J. Electron. Mater. 20, 305 (1991).Google Scholar
[4] Marshall, E. D., Zhang, B., Wang, L. C., Jiao, P. F., Chen, W. X., Sawada, T., Lau, S. S., Kavanagh, K. L. and Fuch, T. F., J. Appl. Phys. 62, 942 (1987).Google Scholar
[5] Marshall, E. D., Lau, S. S., Palmstrøm, C. J., Sands, T., Shwartz, C. L., Schwarz, S. A., Harbison, J. P. and Florez, L. T., Mater. Res. Soc. Symp. Proc. 148, 163 (1989).Google Scholar
[6] Palmstrøm, C. J., Schwarz, S. A., Yablonovitch, E., Harbison, J. P., Schwartz, C. L., Florez, L. T., Gmitter, T. J., Marshall, E. D. and Lau, S. S., J. Appl. Phys. 67, 334 (1990).Google Scholar
[7] Marlow, G. S. and Das, M. B., Solid State Electron. 23, 91 (1982).CrossRefGoogle Scholar
[8] Berger, H. H., Solid State Electron. 15, 145 (1972).Google Scholar
[9] Ivey, D. G., Bruce, R. and Piercy, G. R., Solid-State Electron. 31, 1251 (1988).Google Scholar
[10] Ivey, D. G., Bruce, R. and Piercy, G. R., J. Electron. Mater. 17, 373 (1988).Google Scholar
[11] Ivey, D. G. and Piercy, G. R., Elect, J.. Microsc. Tech. 8, 233 (1988).Google Scholar
[12] Ivey, D. G., Jian, P. and Bruce, R., J. Electron. Mater, submitted January, 1992.Google Scholar
[13] Ivey, D. G., Zhang, L. and Jian, P., J. Mater. Sci.: Mater. Electron. 2, 21 (1991).Google Scholar