Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T11:05:53.728Z Has data issue: false hasContentIssue false

Band Model for Electron Emission from Diamond and Diamond-Like Carbon

Published online by Cambridge University Press:  10 February 2011

J Robertson*
Affiliation:
Engineering Dept, Cambridge University, Cambridge CB2 1PZ, UK
Get access

Abstract

The band diagram is constructed for diamond on metal and diamond-like carbon on metal emitters, from data for electron affinities, Schottky barrier heights or band offsets. For diamond, there is a large offset for the conduction band at the back-contact, causing this to be the dominant barrier for emission. Nitrogen and perhaps grain boundaries reduce this barrier by forming a depletion layer of ionised donors, which narrows the tunnelling distance. In DLC, there is little conduction band offset at the back-contact, and the dominant barrier is at the surface. Nitrogen now lowers the emission barrier by raising the bulk Fermi level and lowering the work function. Unresolved problems are also pointed out.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schwoebel, P R, Brodie, I, J Vac Sci Technol B 13 1391 (1995)Google Scholar
2. Kumar, N, Schmidt, H K, Xie, C, Solid State Technol 38 p71 (May 1995)Google Scholar
3. Jaskie, J E, MRS Bulletin 21 (March 1996) p59 Google Scholar
4. Himpsel, F J, Knapp, J S, Van Vechten, J A, Eastman, D E, Phys Rev B 20 624 (1979)Google Scholar
5. Pate, B B, Surface Sci 165 83 (1986)Google Scholar
6. Bandis, C, Pate, B B, Phys Rev B 52 12056 (1995)Google Scholar
7. van der Weide, J, Zhang, Z, Baumann, P K, Wensell, M G, Bernholc, J, Nemanich, R J, Phys Rev B 50 5803 (1994)Google Scholar
8. Wang, C, Garcia, A, Ingram, D, Lake, M, Kordesch, M E, Electron Lett 27 1459 (1991)Google Scholar
9. Xu, WS, Tzeng, Y, Latham, R V, J Phys D 26 1776 (1993)Google Scholar
10. Xu, W S, Latham, R V, Tzeng, Y, Electronics Lett 29 1596 (1993)Google Scholar
11. Zhu, W, Kochanski, G P, Jin, S, Seibles, L, J Appl Phys 78 2707 (1995)Google Scholar
12. Zhu, W, Kochanski, G P, Jin, S, Seibles, L, Appl Phys Lett 67 1157 (1995)Google Scholar
13. Zhu, W, Kochanski, G P, Jin, S, Seibles, L, J Vac Sci Technol B 14 2011 (1996)Google Scholar
14. Humphreys, V L, Khachan, J, Electron Letts 31 1018 (1995)Google Scholar
15. Geis, M W, Twichell, J C, Macaulay, J, Okano, K, App Phys Lett 67 1328 (1995)Google Scholar
16. Geis, M W, Twichell, J C, Efremow, N N, Krohn, K, Lyszczarz, T M, App Phys Lett 68 2294 (1996)Google Scholar
17. Geis, M W, Twichell, J C, Lyszczarz, T M, J Vac Sci Technol B 14 2060 (1996)Google Scholar
18. Okano, K, Koizumi, S, Silva, S R P, Amaratunga, G A J, Nature 381 140 (1996)Google Scholar
19. Talin, A A, Pan, L S, McCarty, K F, Doerr, H J, Bunshah, R F, Appl Phys Lett 69 3842 (1996)Google Scholar
20. Pan, L S, et al, (Flat Panel Displays 1) Mat Res Soc Symp Proc (1996)Google Scholar
21. Amaratunga, G A J, Silva, S R P, App Phys Lett 68 2529 (1996)Google Scholar
22. Lee, K R, Eun, K Y, Lee, S, Jeon, D R, Thin Solid films 291 171 (1996);Google Scholar
Park, K C, et al, App Phys Lett 70 1381 (1997)Google Scholar
23. Talin, A A, Felter, T E, Friedmann, T A, Sullivan, J P, Siegal, M P, J Vac Sci Technol A 14 1719 (1996)Google Scholar
24. Groning, O, Kuttel, O M, Schaller, E, Groning, P, Schlapbach, L, App Phys Lett 69 476 (1996)Google Scholar
25. Chuang, F Y, Sun, C Y, Chen, T T, Lin, I N, App Phys Lett 69 3504 (1996)Google Scholar
26. Missert, N, Friedmann, T A, Sullivan, J P, Copeland, R G, App Phys Lett 70 1995 (1997)Google Scholar
27. Milne, W I, Robertson, J, Satyaramaran, B S, this volume (1997)Google Scholar
28. Bandis, C, Pate, B B, App Phys Lett 69 366 (1996)Google Scholar
29. Bell, R L, ‘Negative Electron Affinity Devices’ (Oxford University Press, 1973)Google Scholar
30. Robertson, J, Diamond Related Mats 5 797 (1996)Google Scholar
31. Zhang, Z, Wensell, M, Bernholc, J, Phys Rev B 51 5291 (1995)Google Scholar
32. Rutter, M J, Robertson, J, unpublished workGoogle Scholar
33. Grot, S A, Gildenblat, G S, Badzian, A R, IEEE ED Lett 13 462 (1992)Google Scholar
34. van der Weide, J, Nemanich, R J, J Vac Sci Technol B 10 1940 (1992); Phys Rev B 49 13629 (1994)Google Scholar
35. Aoki, M, Kawarada, H, Jpn J App Phys 33 L708 (1994)Google Scholar
36. Monch, W, Surface Sci 300 928 (1994); ‘Semiconductor Surfaces and Interfaces’ (Springer 1995)Google Scholar
37. Rhoderick, E H, Williams, R H, ‘Metal Semiconductor Contacts’, (Oxford 1988)Google Scholar
38. Cardona, M, Ley, L, ‘Photoemission in Solids’, vol 1 (Springer 1978) p48;Google Scholar
Gordy, W, Thomas, W J O, Phys Rev 24 439 (1956)Google Scholar
39. Schluter, M, Phys Rev B 17 5044 (1978)Google Scholar
40. Cowley, A W, Sze, S M, J Appl Phys 36 3212 (1965)Google Scholar
41. Tersoff, J, Phys Rev Lett 56 2755 (1986)Google Scholar
42. Heine, V, Phys Rev 138 A1689 (1965)Google Scholar
43. Monch, W, J Vac Sci Technol B 14 2985 (1996); Appl Surface Sci 92 367 (1996)Google Scholar
44. Kurtin, S, McGill, T C, Mead, C A, Phys Rev Lett 22 1433 (1969)Google Scholar
45. Monch, W, J Appl Phys 80 5076 (1996)Google Scholar
46. Cardona, M, Christensen, N E, Phys Rev B 35 6182 (1987)Google Scholar
47. Harrison, W A, J Vac Sci Technol 14 1016 (1977)Google Scholar
48. Yu, E T, McCaldin, J O, McGill, T C, Solid State Phys 46 1 (1992)Google Scholar
49. Monch, W, Europhys Letts 27 479 (1994)Google Scholar
50. Robertson, J, Prog Solid State Chem 21 199 (1991)Google Scholar
51. Robertson, J, Adv Phys 35 317 (1986)Google Scholar
52. Robertson, J, Phys Rev B 53 16302 (1996)Google Scholar
53. Ristein, J, Schafer, J, Ley, L, Diamond Related Mats 4 508 (1995)Google Scholar
54. Schafer, J, Ristein, J, Ley, L, Diamond Related Mats (1997)Google Scholar
55. Brown, T M, Bittencourt, C, Sebastiani, M, Evangelisti, F, Phys Rev B 55 9904 (1997)Google Scholar
56. Fang, R C, Ley, L, Phys Rev B 40 3818 (1989)Google Scholar
57. Locher, R, Wild, C, Herres, N, Behr, D, Koild, P, App Phys Lett 64 1665 (1994)Google Scholar
58. Falion, P J, Brown, L M, Diamond Related Mats 2 1004 (1993)Google Scholar
59. Dao, Y, Sayers, D E, Nemanich, R J, J App Phys 78 6584 (1995)Google Scholar
60. Bayliss, K H, Latham, R V, Proc Roy Soc A 403 285 (1986)Google Scholar
61. Latham, R V, ‘High Voltage Vacuum Insulation (Academic Press, London, 1995)Google Scholar
62. Stratum, R, Phys Rev 135 A794 (1964)Google Scholar
63. Schlesser, R, McClure, M T, Choi, W B, Hren, J J, Sitar, Z, App Phys Lett 70 1596 (1997)Google Scholar
64. McKenzie, D R, Yin, Y, Marks, N A, Davis, C A, Kravtchinskaia, E, Pailthorpe, B A, Amaratunga, G A J, J Non-Cryst Solids 164 1101 (1993)Google Scholar
65. Veersamy, V S, Yuan, J, Amaratunga, G A J, Milne, W I, Gilkes, K W R, Weiler, M, Brown, L M, Phys Rev B 48 17954 (1993);Google Scholar
Kleinsorge, B, unpublished results (1996)Google Scholar
66. Davis, C A, McKenzie, D R, Yin, Y, Kravtchinskaia, E, Amaratunga, G A J, Veerasamy, V S, Phil Mag B 69 1133 (1994)Google Scholar