Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T03:56:16.188Z Has data issue: false hasContentIssue false

Band structure investigation of chalcopyrite CuInSe2(001) by angle-resolved photoelectron spectroscopy

Published online by Cambridge University Press:  01 February 2011

Ralf Hunger
Affiliation:
Fachgebiet Oberflächenforschung, Institut für Materialwissenschaft, TU Darmstadt, Petersenstr. 23, 64287 Darmstadt, Germany
Christian Pettenkofer
Affiliation:
Abteilung SE 6, Bereich Solarenergieforschung, Hahn-Meitner-Insitut Berlin GmbH, Glienicker Str. 100, 14109 Berlin
Get access

Abstract

Clean and ordered chalcopyrite CuInSe2 surfaces are a precondition for the study of the electronic structure by angle-resolved photoelectron spectroscopy. The preparation of welldefined CuInSe2(001) surfaces by the combination of molecular beam epitaxy and a selenium capping and decapping process is described. The surface structure of CuInSe2 epilayers with different bulk composition is compared and analysed by low-energy electron diffraction.

Employing near-stoichiometric surfaces, the valence electronic structure of CuInSe2 was investigated by angle-resolved photoelectron spectroscopy at the synchrotron source BESSY 2. This is the first study of the valence band structure of a copper chalcopyrite semiconductor material by photoelectron spectroscopy. The valence band dispersion along τT, i.e. the [001] direction, was investigated by a variation of the excitation energy from 10 to 35 eV under normal emission, and the band dispersion along τT, i.e. the [110] direction, was analysed by angular scans with hv = 13 eV.

The valence bands derived from antibonding and bonding Se4p-Cu3d hybrid orbitals, nonbonding Cu3d states and In-Se hybrid states are clearly indentified. The strongest dispersion is found for the topmost valence band with a bandwidth of ∼0.7 eV from τ to T. From τ to N, the observed dispersion was 0.5 eV. The experimental valence bands are discussed in relation to calculated band structures in the literature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Rau, U. and Schock, W., Appl. Phys. A 69 (1999) 131.Google Scholar
[2] Jaffe, E.J. and Zunger, A., Phys. Rev. B 28 (1983) 5822.Google Scholar
[3] Belhadj, M., Tadjer, A., Abbar, B., Bousahla, Z., Bouhafs, B. and Aourag, H., phys. stat. sol. (b) 241 (2004) 2516.Google Scholar
[4] Zhang, S.B., Wei, S.H., Zunger, A. and Katayama-Yoshida, H., Phys. Rev. B 57 (1998) 9642.Google Scholar
[5] Hüfner, S., Photoelectron Spectroscopy. (Springer, Berlin, 1994). F2.2.11 Google Scholar
[6] Scheer, R., Research Trends in Vacuum Science and Technology 1 (1997) 77.Google Scholar
[7] Hunger, R., Schulmeyer, T., Klein, A., Jaegermann, W., Sakurai, K., Yamada, A., Fons, P., Matsubara, K. and Niki, S., Surf. Sci. 557 (2004) 263.Google Scholar
[8] Niki, S., Makita, Y., Yamada, A., Hellman, O., Fons, P.J., Obara, A., Okada, Y., Shioda, R., Oyanagi, H., Kurafuji, T., Chichibu, S., Nakanishi, H., J. Cryst. Growth 150 (1995) 1201.Google Scholar
[9] Yamada, A., Fons, P., Matsubara, K., Iwata, K., Sakurai, K. and Niki, S., Thin Solid Films 431-432 (2003) 277.Google Scholar
[10] Schulmeyer, T., Kniese, R., Hunger, R., Jaegermann, W., Powalla, M. and Klein, A., Thin Solid Films 451-452 (2004) 420.Google Scholar
[11] Deniozou, T., Esser, N., Schulmeyer, T. and Hunger, R., submitted (2005).Google Scholar
[12] Hunger, R., Pettenkofer, C. and Scheer, R., Surf. Sci. 477 (2001) 76.Google Scholar
[13] Herberholz, R., Rau, U., Schock, H.W., Haalboom, T., Gödecke, T., Ernst, F., Beilharz, C., Benz, K.W. and Cahen, D., Eur. Phys. J. AP 6 (1999) 131.Google Scholar
[14] Löher, T., Klein, A., Pettenkofer, C. and Jaegermann, W., J. Appl. Phys. 81 (1997) 7806.Google Scholar
[15] Schmid, D., Ruckh, M. and Schock, H.W., Appl. Surf. Sci. 103 (1996) 409.Google Scholar
[16] Deniozou, T., Esser, N., Siebentritt, S., Vogt, P. and Hunger, R., Thin Solid Films 480-481 (2005) 382.Google Scholar
[17] Deniozou, T., Esser, N. and Siebentritt, S., Surf. Sci. 579 (2005) 100.Google Scholar
[18] Mayer, T., Lebedev, M.V., Hunger, R. and Jaegermann, W., Appl. Surf. Sci. (2005) in press.Google Scholar
[19] Takarabe, K., Kawai, K., Minomura, S., Irie, T. and Taniguchi, M., J. Appl. Phys. 71 (1992) 441.Google Scholar