Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T18:15:31.247Z Has data issue: false hasContentIssue false

Bias Stress Induced Instabilities in Amorphous Silicon Nitride / Crystalline Silicon and Amorphous Silicon Nitride / Amorphous Silicon Structures

Published online by Cambridge University Press:  21 February 2011

J. Kanicki
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, P.O.Box 218, Yorktown Heights, NY 10598
C. Godet
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, P.O.Box 218, Yorktown Heights, NY 10598
A. V. Gelatos
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, P.O.Box 218, Yorktown Heights, NY 10598
Get access

Abstract

The effects of positive and negative bias stress on hydrogenated amorphous silicon nitride / crystalline silicon and hydrogenated amorphous silicon nitride / hydrogenated amorphous silicon (a-Si:H) structures are investigated as a function of stress time, stress temperature and stress bias. It is shown that in both structures bias stress induces a parallel shift of the C-V (capacitance-voltage) characteristics. For a given stress bias the direction of the C-V shift depends on the sign of the applied stress voltage, while the magnitude of the C-V shift depends on stress time and temperature. In addition, it is shown that positive bias stress slightly increases the number of localized states in the a-Si:H mobility gap, but negative bias stress does not. These results lead us to conclude that the C-V shift is not induced by dangling bond defects in a-Si:H but rather by carrier trapping in the insulator.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. van Berkel, C., in “Amorphous & Macrocrystalline Semiconductor Devices, ed. Kanicki, J. (Artech House Inc., Norwood, MA 1991).Google Scholar
2. Powell, M.J., van Berkel, C., French, I.D., and Nicholls, D.H., Appl. Phys. Lett., 51, 1242 (1987).Google Scholar
3. Powell, M.J., Appl. Phys. Lett. 43, 597 (1983).CrossRefGoogle Scholar
4. van Berkel, C. and Powell, M.J., Appl. Phys. Lett., 51, 1094 (1987).Google Scholar
5. Jackson, W.B., Marshall, J.M. and Moyer, M.D., Phys. Rev. B 39, 1164 (1989).CrossRefGoogle Scholar
6. Powell, M.J., Deane, S.C., French, I.D., Hughes, J.R. and Milne, W.I., Phil. Mag. B, 63, 325 (1991).CrossRefGoogle Scholar
7. Powell, M.J., van Berkel, C. and Hughes, J.R., Appl. Phys. Lett., 54, 1323 (1989).Google Scholar
8. Gelatos, A.V. and Kanicki, J., Mat. Res. Soc. Symp. Proc. 149, 729 (1989).Google Scholar
9. Gelatos, A.V., Wagner, P.R. and Kanicki, J., J. Non-Cryst. Solids 114, 699 (1989).Google Scholar
10. Gelatos, A.V. and Kanicki, J., Appl. Phys. Lett. 56, 940 (1990).Google Scholar
11. Kanicki, J. and Hug, S., Appl. Phys. Lett., 149, 729 (1989).Google Scholar
12. Lustig, N. and Kanicki, J., J. Appl. Phys., 114, 699 (1989).Google Scholar
13. Gelatos, A.V., Cohen, J.D. and Harbison, J.P., Appl. Phys. Lett. 49, 722 (1986).Google Scholar
14. Gelatos, A.V. and Kanicki, J., Appl. Phys. Lett., 57, 1197 (1990).Google Scholar
15. Ogawa, T., Hotta, S. and Takezawa, H., Mat. Res. Soc. Symp. Proc., 192, 385 (1990).Google Scholar
16. Fujimoto, Y. (private communication).Google Scholar