Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T22:49:58.155Z Has data issue: false hasContentIssue false

BIC Formation and Boron Diffusion in Relaxed Si0.8Ge0.2

Published online by Cambridge University Press:  17 March 2011

M. E. Law
Affiliation:
SWAMP Center, University of Florida, Gainesville, FL
P.E. Thompson
Affiliation:
Naval Research Laboratory, Code 6812, Washington D.C., 20375
J. Liu
Affiliation:
Varian Semiconductors Equipment Associates, Gloucester, MA
M. Klimov
Affiliation:
Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL
V. Craciun
Affiliation:
Major Analytical and Instrumentation Center, University of Florida, Gainesville, FL
Get access

Abstract

The relationships between Boron Interstitial Cluster (BIC) evolution and boron diffusion in relaxed Si0.8Ge0.2 have been investigated. Structures were grown by Molecular Beam Epitaxy (MBE) with surface boron wells of variant composition extending 0.25 [.proportional]m into the substrate, as well as boron marker layers positioned 0.50 [.proportional]m below the surface. The boron well concentrations are as follows: 0, 7.5×1018, 1.5×1019, and 5.0×1019 atoms/cm3. The boron marker layers are approximately 3 nm wide and have a peak concentration of 5×1018 atoms/cm3. Samples were ion implanted with 60 keV Si+ at a dose of 1×1014 atoms/cm2 and subsequently annealed at 675°C and 750°C for various times. Plan-view Transmission Electron Microscopy (PTEM) was used to monitor the agglomeration of injected silicon interstitials and the evolution of extended defects in the near surface region. Secondary Ion Mass Spectroscopy (SIMS) concentration profiles facilitated the characterization of boron diffusion behaviors during annealing. Interstitial supersaturation conditions and the resultant defect structures of ion implanted relaxed Si0.8Ge0.2 in both the presence and absence of boron have been characterized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kuo, P., Hoyt, J. L., Gibbons, J. F., turner, J. E., Jacowitz, R. D., and Kamins, T. I.. Appl. Phys. Lett. 62, 612 (1992)Google Scholar
[2] Moriya, N., Fedlman, L C., Luftman, H. S., King, C. A., Bevk, J., and Freer, B.. Phys. Rev. Lett. 71, 883 (1993).Google Scholar
[3] Im, S., Eisen, F., Nicolet, M.-A., Tanner, M. O., Wang, K. L., and Theodore, N. D.. J. Appl. Phys. 81, 1695 (1997).Google Scholar
[4] Thompsom, P. E., Bennett, J., Crosby, R., and Twigg, M. E.. Mat. Res. Soc. Symp. Proc. 745, 87, (2003).Google Scholar
[5] Stolk, P. A., Gossmann, H.-J., Eaglesham, D. J., and Poate, J. M.. Nucl. Instr. Meth. Phys. Res. B 96, 187 (1995).Google Scholar
[6] Haynes, T. E., Stolk, P. A., Gossmann, H.-J., Eaglesham, D. J., Jacobson, D. C., and Poate, J. M.. Appl. Phys. Lett. 69, 1376 (1996).Google Scholar
[7] Zhang, L. H., Jones, K. S., Chi, P. H., and Simons, D. S.. Appl. Phys. Lett. 67, 2025 (1995).Google Scholar
[8] Mannino, G., Cowern, N. E. B., Roozeboom, F., and Berum, J. G. M. van. Appl. Phys. Lett. 76, 855 (2000).Google Scholar
[9] Eaglesham, D. J., Stolk, P. A., Gossmann, H.-J., and Poate, J. M.. Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
[10] Crosby, R. T., Jones, K. S., Law, M. E., Larsen, A. N., and Hansen, J. L., Mat. Sci. Semic. Proc. 6 205 (2003).Google Scholar
[11] Solmi, S., Bersani, M., Sbetti, M., Hansen, J. L., and Larsen, A. N.. J. Appl. Phys. 88, 4547 (2000).Google Scholar
[12] Zangenberg, N. R., Fage-Pedersen, J., Hansen, J. L., and Larsen, A. N.. J. Appl. Phys. 94, 3883 (2003).Google Scholar