Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T18:47:22.776Z Has data issue: false hasContentIssue false

Bonding Constraints at Interfaces Between Crystalline Si and Stacked Gate Dielectrics

Published online by Cambridge University Press:  10 February 2011

G. Lucovsky
Affiliation:
Deptartments of Physics, Materials Science and Engineering, and Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-8202
J.C. Phillips
Affiliation:
Lucent Bell Labs., Murray Hill, NJ 07974
Get access

Abstract

This paper discusses chemical bonding effects at Si-dielectric interfaces that are important in the implementation of alternative gate dielectrics including: i) the character of interfacial bonds, either isovalent with bond and nuclear charge balanced as in Si-SiO2, or heterovalent, with an inherent mismatch between bond and nuclear charge, ii) mechanical bonding constraints related to the average number of bonds/atom, Nay, and iii) band offset energies that are reduced in transition metal oxides due to the d-state origins of the conduction band states. Applications are made to specific classes of dielectric materials including i) nitrides and oxide/nitride stacks and ii) alternative high-K gate materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Harrison, W.A., Kraut, E.A., Waldrop, J.R. and Grant, R.W., Phys. Rev. B 18, 1402 (1978).Google Scholar
[2] Lucovsky, G., Wu, Y., Niimi, H., Misra, V. and Phillips, J.C., Appl. Phys. Lett. 74, (5 April 1999).10.1063/1.123728Google Scholar
[3] Robertson, J. and Chen, C.W., Appl. Phys. Lett. 74, 1168 (1999).10.1063/1.123476Google Scholar
[4] Galeener, F.L., Stutius, W. and McKinley, G.T., in The Physics of MOS Insulators, ed by Lucovsky, G., Pantelides, S.T. and Galeener, F.L. (Pergamon, NY, 1980), p. 77.10.1016/B978-0-08-025969-7.50018-XGoogle Scholar
[5] Luan, H.F., Z, B., , Wu, Kang, L.G., Kim, B.Y., Vrtis, R., Roberts, D. and Kwong, D.L., IEDM Tech. Dig. 609 (1998).Google Scholar
[6] Alers, G.B., Werder, D.J., Chabal, Y., Lu, H.C., Gusev, E.P., Garfunkel, E., Gustafson, T. and Urdahl, R.S., Appl. Phys. Lett. 73, 1517 (1998).10.1063/1.122191Google Scholar
[7] Lucovsky, G., Rozaj-Brvar, A. and Davis, R.F., in The Structure of Non-Crystalline Materials 1982, edited by Gaskell, P.H., Parker, J.M. and Davis, E.A. (Taylor and Francis, London, 1983), p. 193.Google Scholar
[8] Phillips, J.C., J. Non-Cryst. Solids 34, 153 (1979); J. Non-Cryst. Solids 47, 203 (1983).10.1016/0022-3093(79)90033-4Google Scholar
[9] He, H. and Thorpe, M. F., Phys. Rev. Lett. 54, 2107 (1985).10.1103/PhysRevLett.54.2107Google Scholar
[10] Phillips, J.C., in Rigidity Theory and Applications, ed. by Thorpe, M.F. and Duxbury, P., (Michigan State University Press, East Lansing, 1999) to be published.Google Scholar
[11] Lucovsky, G. and Phillips, J.C., J. Non-Cryst. Solids 227, 1221 (1998).10.1016/S0022-3093(98)00209-9Google Scholar
[12] Merwe, J. H. Van der, J. Appl. Phys. 34, 123 (1963).10.1063/1.1729051Google Scholar
[13] Misra, V. et al., submitted to IEEE Electron Device Trans. (1998).Google Scholar
[14] Lucovsky, G., J. Vac. Sci. Technol. A 16, 356 (1998).10.1116/1.581005Google Scholar
[15] Yang, H.Y., Niimi, H. and Lucovsky, G., J. Appl. Phys. 83, 2327 (1998).10.1063/1.366976Google Scholar
[16] Chatterjee, A. et al, IEDM Tech. Dig. 779 (1998).Google Scholar