Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T23:14:46.487Z Has data issue: false hasContentIssue false

Broadband Determination of Microwave Permittivity and Loss in Tunable Dielectric Thin Film Materials

Published online by Cambridge University Press:  10 February 2011

Ronald H. Ono
Affiliation:
National Institute of Standards and Technology, 325 Broadway, Boulder, CO, 80303
Get access

Abstract

We demonstrate a new method for determining the frequency-dependent dielectric properties of thin-film materials at microwave frequencies using coplanar waveguide (CPW) transmission line measurements. The technique makes use of the complex propagation constant determined from multiline thru-reflect-line (TRL) calibrations for CPW transmission lines to determine the distributed capacitance and conductance per unit length. By analyzing data from CPW transmission lines of different geometries, we are able to determine the complex permittivity of the dielectric thin film under study as a function of frequency from 1 to 40 GHz. By performing these measurements under an applied bias voltage, we are able in addition to determine the tuning and figure of merit that are of interest for voltage-tunable dielectric materials over the frequency range 1 to 26.5 GHz. We demonstrate this technique with measurements of the permittivity, loss tangent, tuning, and figure of merit for a 0.4 µm film of Ba0.5Sr0.5TiO3 at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Findikoglu, A.T., Jia, Q.X., Campbell, I.H., Wu, X.D., Reagor, D., Mombourquette, C.B., and McMurry, D., Appl. Phys. Lett 66, 3674 (1995).10.1063/1.114137Google Scholar
[2] DeGroot, D.C., Beall, J.A., Marks, R.B., and Rudman, D.A., IEEE Trans. Applied Supercond. 5, 2272 (1995).10.1109/77.403038Google Scholar
[3] Jia, Q.X., Wu, X.D., Foltyn, S.R., and Tiwari, P., Appl. Phys. Lett. 66, 2197 (1995).10.1063/1.113945Google Scholar
[4] Baniecki, J.D., Laibowitz, R.B., Shaw, T.M., Duncombe, P.R., Neumayer, D.A., Kotecki, D.E., Shen, H., and Ma, Q.Y., Appl. Phys. Lett. 72, 498 (1998).10.1063/1.120796Google Scholar
[5] Zafar, S., Jones, R.E., Chu, P., White, B., Jiang, B., Taylor, D., Surcher, P., and Gillepsie, S., Appl. Phys. Lett. 72, 2820 (1998).10.1063/1.121495Google Scholar
[6] Chang, H., Takeuchi, I., and Xiang, X.-D., Appl. Phys. Lett. 74, 1165 (1999).10.1063/1.123475Google Scholar
[7] Miranda, F.A., Mueller, C.H., Cubbage, C.D., Bhasin, K.B., Singh, R.K., Harkness, S.D., IEEE Trans. Appl. Supercond. 5, 3191 (1995).10.1109/77.403270Google Scholar
[8] Chang, W., Horowitz, J.S., Carter, A.C., Pond, J.M., Kirchoefer, S.W., Gilmore, C.M., and Chrisey, D.B., Appl. Phys. Lett. 74, 1033 (1999).10.1063/1.123446Google Scholar
[9] Marks, R.B., IEEE Trans. Microwave Theory Tech. 39, 1205 (1991).10.1109/22.85388Google Scholar
[10] Williams, D.F. and Marks, R.B., 38th ARFTG Conf. Digest, pp.6881, March 1992.Google Scholar
[11] Williams, D.F. and Marks, R.B., IEEE Trans. Microwave Guided Wave Lett. 1, 243 (1991).10.1109/75.84601Google Scholar
[12] Williams, D.F. and Marks, R.B., IEEE Trans. Microwave Guided Wave Lett. 1, 141 (1991).Google Scholar
[13] Williams, D.F. and Marks, R.B., IEEE Trans. Microwave Guided Wave Lett. 3, 247 (1991).10.1109/75.242226Google Scholar
[14] Janezic, M.D. and Williams, D.F., IEEE International Microwave Symposium Digest, Vol.3, pp. 13431345, June, 1997.Google Scholar
[15] Carlsson, E. and Gevorgian, S., IEEE Trans. Microwave Theory Tech. 47, 1544 (1999).10.1109/22.780407Google Scholar