Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T23:54:06.337Z Has data issue: false hasContentIssue false

Calculation of the Hubbard-Type Many Body Interaction Parameters using Constrained Density Functional Theory

Published online by Cambridge University Press:  28 February 2011

Michael Schluter
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Mark S. Hybertsen
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Niels E. Christensen
Affiliation:
Max-Planck-Institut fur Festkorperforschung, Postfach 80 06 65, D-7000 Stuttgart 80, Federal Republic of Germany
Get access

Abstract

The constrained density functional approach is used to calculate the energy surface as a function of local charge fluctuations in La2CuO4. This energy surface is then mapped onto a self consistent mean field solution of the Hubbard model which allows extraction of the Coulomb interaction parameters when combined with oneelectron parameters derived from band structure results. The present calculations indicate that La2CuO4 is intermediate between the extreme spin or charge fluctuation regimes. This severly restricts the range of parameter space for theories of quasiparticles, optical excitations and possible pairing mechanism based on the extended Hubbard model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Anderson, P.W., Baskaran, G., Zou, Z., and Hsu, T., Phys. Rev. Lett. 58, 2790 (1987).Google Scholar
[2]Zhang, F.C. and Rice, T.M., Phys. Rev. B 37, 3759 (1988).Google Scholar
[3]Emery, V.J., Phys. Rev. Lett. 58, 2794 (1987).Google Scholar
[4]Varma, C.M., Schmitt-Rink, S. and Abrahams, E., Solid State Comm. 62, 681 (1987).Google Scholar
[5]Hirsch, J.E. et al. , Phys. Rev. Lett. 60, 1668 (1988); unpublished.CrossRefGoogle Scholar
[6]Stechel, E.B. and Jennison, D.R., Phys. Rev B 38, 4632 (1988); and preprint.Google Scholar
[7]Dederichs, P.H., Blugel, S., Zeller, R., and Akai, H., Phys. Rev. Lett. 53, 2512 (1984).CrossRefGoogle Scholar
[8]Mattheiss, L.F., Phys. Rev. Lett. 58, 1028 (1987).Google Scholar
[9]Anderson-, O.K., Phys. Rev. B 12, 3060 (1975); H.L. Skriver, The LMTO Method (Springer-Verlag, New York, 1984).Google Scholar
[10]McMahan, A.K., Martin, R.M. and Satpathy, S., Phys. Rev. B, in press.Google Scholar
[11]Weber, W., Phys. Rev. Lett. 58, 1371 (1987); unpublished.Google Scholar
[12]Chen, C.F., X.W. Wang, Leung, T.C., and Harmon, B.N., preprint.Google Scholar
[13]Shen, Z.-X. et al. , Phys. Rev. B 36, 8414 (1987).Google Scholar
[14]Marel, D. van der et al. , Phys. Rev. B 37, 5136 (1988).Google Scholar
[15]Thiry, P. et al. , Europhys. Lett. 5, 55 (1988).Google Scholar
[16]Ramaker, D.E. in Chemistry of High Temperature Superconductors II, edited by Nelson, D.L., George, T.F. (ACS Publishing, Washington D.C., 1988) p. 84.CrossRefGoogle Scholar
[17]Stechel, E.B., private communication.Google Scholar
[18]Lyons, K.B. et al. , Phys. Rev. B 37, 2353 (1988).Google Scholar
[19]Ogata, M. and Shiba, H., preprint.Google Scholar