Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T12:44:03.190Z Has data issue: false hasContentIssue false

Carbon Aerogels and Xerogels

Published online by Cambridge University Press:  25 February 2011

Richard W. Pekala
Affiliation:
Chemistry & Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550
Cynthia T. Alviso
Affiliation:
Chemistry & Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

The aqueous polycondensation of resorcinol with formaldehyde proceeds through a sol-gel transition and results in the formation of highly crosslinked, transparent gels. If the solvent is simply evaporated from the pores of these gels, large capillary forces are exerted and a collapsed structure known as a xerogel is formed. In order to preserve the gel skeleton and minimize shrinkage, the aforementioned solvent or its substitute must be removed under supercritical conditions. The microporous material that results from this operation is known as an aerogel. Because resorcinol-formaldehyde aerogels and xerogels consist of a highly crosslinked aromatic polymer, they can be pyrolyzed in an inert atmosphere to form vitreous carbon monoliths. The resultant porous materials are black in color and no longer transparent, yet they retain the ultrafine cell size (< 50 nm), high surface area (600-800 m2 /g), and the interconnected particle morphology of their organic precursors. The thermal, acoustic, mechanical, and electrical properties of carbon aerogels/xerogels primarily depend upon polymerization conditions and pyrolysis temperature. In this paper, the chemistry-structure-property relationships of these unique materials will be discussed in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Benton, S.T. and Schmitt, C.R., Carbon, 10, 185 (1972).CrossRefGoogle Scholar
[2] Pekala, R.W. and Hopper, R.W., J. Mat. Sci., 22, 1840 (1987).Google Scholar
[3] Sylwester, A.P., Aubert, J.H., Rand, P.B., Arnold, C. Jr., and Clough, R.L., Am. Chem. Soc. PMSE Preprint, 57, 113 (1987).Google Scholar
[4] Geer, H.C., in Encyclopedia of Polymer Science and Technology, edited by Mark, H.F., Gaylord, N.G., and Bikales, N.M. (Interscience, New York, 1970), p. 102.Google Scholar
[5] Hench, L.L. and West, J.K., Chem. Rev., 90, 33 (1990).Google Scholar
[6] Ulrich, D.R., Chem. & Eng. News, 6(1), 28 (1990).Google Scholar
[7] Teichner, S.J., Nicolaon, G.A., Vicarini, M.A., Gardes, G.E.E., Adv. Coll. Interf. Sci., 5, 245 (1976).CrossRefGoogle Scholar
[8] Brinker, C.J. and Scherer, G.W., Sol-Gel Science, (Academic Press, New York, 1990).Google Scholar
[9] Fricke, J., Sci. Am., 258(5), 92 (1988).CrossRefGoogle Scholar
[10] Aerogels, edited by Fricke, J., (Springer-Verlag, New York, 1986).Google Scholar
[11] Hrubesh, L.W., Tillotson, T.M., and Poco, J.F., in Better Ceramics Through Chemistry IV, edited by Brinker, C.J., Clark, D.E., Ulrich, D.R., and Zelinski, B.J., (Mat. Res. Soc. Proc. M80, Pittsburgh, PA, 1990), pp. 315319.Google Scholar
[12] Pekala, R.W., J. Mat. Sci., 24, 3221 (1989).CrossRefGoogle Scholar
[13] Pekala, R.W. and Kong, F.M., Polym. Prpts., 30(1), 221 (1989).Google Scholar
[14] Alviso, C.T. and Pekala, R.W., Polym. Prpts., 32(3), 242 (1991).Google Scholar
[15] Pekala, R.W. and Alviso, C.T., in Better Ceramics Through Chemistry IV, edited by Brinker, C.J., Clark, D.E., Ulrich, D.R., and Zelinski, B.J., (Mat. Res. Soc. Proc. M8, Pittsburgh, PA, 1990), pp. 791795.Google Scholar
[16] Pekala, R.W., Alviso, C.T., and LeMay, J.D., J. Non-Cryst. Solids, 125 67 (1990).Google Scholar
[17] Hulsey, S.S., Alviso, C.T., Kong, F.M., and Pekala, R.W., in this MRS proceedings.Google Scholar
[18] Lu, X., Arduini-Schuster, M.C., Kuhn, J., Nilsson, O., Frickes, J., and Pekala, R.W., Science, 255, 971 (1992).Google Scholar
[19] diVittorio, S.L., Dresselhaus, M.S., Endo, M., Issi, J-P., Piraux, L., and Bayot, V., J. Mat. Res., 6(4), 778 (1991).Google Scholar
[20] LeMay, J.D., Hopper, R.W., Hrubesh, L.W., and Pekala, R.W., MRS Bulletin, 15(12), 19 (1990).Google Scholar
[21] Pekala, R.W. and Kong, F.M., J. de Physique Coll. Suppl., 5Q(4), C433 (1989).Google Scholar
[22] Keefer, K.D. and Schaefer, D.W., Phys. Rev. Lett., 56(20), 2199 (1986).Google Scholar
[23] Schaefer, D.W., Wilcoxon, J.P., Keefer, K.D., Bunker, B.C., Pearson, R.K., Thomas, I.M., and Miller, D.E., in Physics and Chemistry of Porous Media II, edited by Banavar, J.R., Koplik, J., and Winkler, K.W., (AIP Conf. Proc. 154, New York, 1986), pp. 6380.Google Scholar
[24] Jenkins, G.M. and Kawamura, K., Polymeric Carbons - Carbon Fibre, Glass and Char, (Cambridge Univ. Press, New York, 1976) p. 84.Google Scholar
[25] Gibson, L.J. and Ashby, M.F., Proc. Royal Soc. Long., 382(A), 43 (1982).Google Scholar
[26] Gross, J., Fricke, J., Pekala, R.W., and Hrubesh, L.W., Phys. Rev. B, in press.Google Scholar
[27] Fung, A.W. P. and Dresselhaus, M.S. (private communication).Google Scholar
[28] Knight, D.S. and White, W.B., J. Mat. Res., 4, 385 (1989).Google Scholar