Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T03:52:00.573Z Has data issue: false hasContentIssue false

Carboxylate-Alumoxanes: Precursors for Heterogeneous Catalysts

Published online by Cambridge University Press:  21 February 2011

Christopher D. Jones
Affiliation:
Department of Chemistry, Rice University, Houston, TX 77005
David S. Brown
Affiliation:
Shell Chemical Company, Houston, TX, 7082
Larry L Marshall
Affiliation:
Shell Chemical Company, Houston, TX, 7082
Andrew R. Barrona
Affiliation:
Department of Chemistry, Rice University, Houston, TX 77005 Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005 http://pcheml.rice.edu/-arb/Barron.html
Get access

Abstract

Carboxylate-alumoxanes are organic substituted alumina nano-particles synthesized from boehmite in aqueous solution which are an inexpensive and environmentally benign precursor for the fabrication of nano-, meso-, and macro-scale aluminum based ceramics. The use of carboxylate-alumoxanes as a novel high surface area alumina support for heterogeneous catalysis will be discussed. The ability to perform further chemistry on the organic ligands of the carboxylate-alumoxanes allows for attachment of catalysts. During calcination, the organic ligands are burned out, leaving behind the catalyst in a well-dispersed manner. To demonstrate this concept, the metathesis of C16 olefins using a molybdenum oxide catalyst supported on alumina will be discussed using the carboxylate-alumoxane method.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Thomas, J. M. and Zamaraev, K., Eds. Perspectives in Catalysis, (Blackwell, Oxford, 1991).Google Scholar
2 Wefers, K. and Misra, C., Oxides and Hydroxides of Aluminum, (Alcoa Laboratories, 1987).Google Scholar
3 Apblett, A. W., Landry, C. C., Mason, M. R., and Barron, A. R. in Synthesis and Processing of Ceramics: Scientific Issues, edited by Rhine, W. E., Shaw, T. M., Gottschall, R. J., and Chen, Y. (Mat. Res. Soc., Symp. Proc., 249, 1992. pp. 7586.Google Scholar
4 Landry, C. C., Pappé, N., Mason, M. R., Apblett, A. W., Tyler, A. W., Maclnnes, A. N., and Barron, A. R., J. Mater. Chem.., 5, 331(1995).Google Scholar
5 Callender, R. L., Harlan, C. J., Shapiro, N. M., Jones, C. D., Callahan, D. L., Wiesner, M. R., Cook, R., and Barron, A. R., Chem. Mater., 9, 2418 (1997).Google Scholar
6 Cook, R. L., Wong, C., Harlan, C. J., Kareiva, A., and Barron, A. R. in Advanced Catalytic Materials-1996, edited by Lednor, P. W., Ledous, M. J., Nagake, D. A., and Thompson, L. T., (Mater. Res. Soc. Symp. Proc., 454, 1997), pp. 169176.Google Scholar
7 Ivin, K. J. and Mol, J. C., Olefin Metathesis and Metathesis Polymerization, (Academic Press, San Diego, CA, 1997).Google Scholar
8 Mol, J. C. in Olefin Metathesis and Polymerization Catalysts, edited by Imamoglu, Y. (Kluwer Academic Publishers, Netherlands, 1990), p. 247.Google Scholar
9 Etienne, E., Ponthieu, E., Payen, E., and Grimblot, J., J. Non-Crystal. Solids, 147–148, 764 (1992).Google Scholar
10 Wagner, G. W. and Hanson, B. E., Organometallics, 6, 2494 (1987).Google Scholar
11 Iwasawa, Y. and Ogasawara, S., J.Faraday Trans. I, 75, 1465 (1979).Google Scholar
12 Grunert, W., Stakheev, A. Y., Feldhaus, R., Anders, K., Shpiro, E. S., and Minachev, K. M., J. Catal., 135, 287 (1992).Google Scholar
13 Vikulov, K. A., Elev, I. V., Shelimov, B. N., and Kazansky, V. B., J. Mol. Catal., 55, 126 (1989).Google Scholar
14 Skupinska, J., Chem. Rev., 91, 613 (1991).Google Scholar
15 Freitas, E. R. and Gum, C. R., Chem. Eng. Progress, 75, 73 (1979).Google Scholar
16 Zhang, B., Liu, N., Lin, Q., and Jin, D., J.Mol. Catal., 65, 12 (1990).Google Scholar