Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T16:19:15.427Z Has data issue: false hasContentIssue false

Cathodoluminescence of Diamond-Like and Hydrogenated Amorphous Silicon Carbide Materials

Published online by Cambridge University Press:  25 February 2011

F. Alvarez
Affiliation:
Instituto de Fisica, UNICAMP, CP 6165, 13081, Campinas, SP, Brazil.
R.R. Koropecki
Affiliation:
Instituto de Fisica, UNICAMP, CP 6165, 13081, Campinas, SP, Brazil.
F. Fajardo
Affiliation:
Instituto de Fisica, UNICAMP, CP 6165, 13081, Campinas, SP, Brazil.
H.L. Fragnito
Affiliation:
Instituto de Fisica, UNICAMP, CP 6165, 13081, Campinas, SP, Brazil.
P.V. Santos
Affiliation:
Instituto de Fisica, UNICAMP, CP 6165, 13081, Campinas, SP, Brazil.
Get access

Abstract

The room temperature cathodoluminescence (CL) of diamond-1ike materials produced by glow discharge is reported. The CL spectra of these samples (4 eV optical gap) display two bands located at 2.3 eV and 2.8 eV which are frequently found in natural and synthetic diamond. X-ray diffraction spectra (before electron bombardment) are identical to those obtained in natural powder diamond, confirming the existence of crystalline particles. The room temperature CL of phosphorous doped samples is also reported.

Structural changes in amorphous silicon carbide samples (3.0 eV optical gap) associated with electron bombardnent are presented and elucidated by IR studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvarez, F., Fragnito, H.L., Prieto, P., and Chambouleyron, I., J. Non-Cryst. Solids 97 & 98, 1319 (1987).Google Scholar
2. Angus, J.C., Will, H.A., and Stannko, W.S., J. Appl. Phys. 39, 2915 (1967).Google Scholar
3. Deshpandey, C.V. and Bunshah, R.F., J. Vac. Sci. Techno1. A 7, 2294 (1989).Google Scholar
4. Ma, J. S., Kawarada, H., Yonehara, T., Suzuki, J., Wei, J., Yokota, Y., and Hiraki, A., Appl. Phys. Lett. 55, 1071 (1989).Google Scholar
5. Angus, J.C., Buck, F.A., Sunkara, M., Groth, T.F., Hyman, C.C., and Gat, R., MRS Bull. (Mater. Res. Soc., 1989), p. 38.Google Scholar
6. Mort, J., Kuhman, D., Machonkin, M., Morgan, M., Jansen, F., Okumura, K., Le Grice, Y.M., and Nemanich, R.J., Appl. Phys. Lett. 55, 1121 (1989).Google Scholar
7. Amaratunga, G., Putnis, A., Clay, K., and Milne, W., Appl. Phys. Lett. 55, 634 (1989).Google Scholar
8. Corbun, J.W. and Kay, E., J. Appl. Phys. 43, 4955 (1972).Google Scholar
9. Alvarez, F., Castro, L.F., Koropecki, R.R., Sartori, C., and Gordillo, G., J. Non-Cryst. Solids 115, 42 (1989).Google Scholar
10. Arce, R., Koropecki, R.R., Buitrago, R.H., Alvarez, F., and Chambouleyron, I., J. Appl. Phys. 66, 4544 (1989).Google Scholar
11. Vidal, R., Koropecki, R.R., Arce, R., and Ferron, J., J. Appl. Phys. 62, 1054 (1987)Google Scholar
12. Kawarada, H., Nishimura, K., Ito, T., Suzuki, J., Mar, K., Yokota, Y. and Hiraki, A., Jpn. J. of Appl. Phys. 27, L683 (1988).Google Scholar
13. Robin, L.H., Cook, L.P., Farabaugh, E.N., and Feldman, A., Phys. Rev. B 39, 13367 (1989–11).Google Scholar
14. Power Diffraction File Search Manual, (Hanawalt method) Inorganic, 1973. Public. SMH-23, Joint Conmittee on powder Diffraction Standards. Ed. by Berry, L.G..Google Scholar
15. Dischler, B., Bubenzer, A., and Koidl, P., Solid State Carmun. 48, 105 (1983).Google Scholar