Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T00:46:50.693Z Has data issue: false hasContentIssue false

Characterization of SiGe Alloy Nanocrystallites Prepared by Pulsed Laser Ablation in Inert Gas Ambient

Published online by Cambridge University Press:  15 February 2011

Yuka Yamada
Affiliation:
Opto-Electro Mechanics Research Laboratory, Matsushita Research Institute Tokyo, Inc., 3–10–1 Higashimita, Tama-ku, Kawasaki 214, Japan, yyamada@mrit.mei.co.jp
Takaaki Orii
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Takehito Yoshjda
Affiliation:
Opto-Electro Mechanics Research Laboratory, Matsushita Research Institute Tokyo, Inc., 3–10–1 Higashimita, Tama-ku, Kawasaki 214, Japan, yyamada@mrit.mei.co.jp
Get access

Abstract

We report nanometer-sized silicon germanium (SiGe) alloy crystallites prepared by excimer laser ablation in constant-pressure inert gas. Size distribution of the SixGelxultrafine particles decreases with decreasing x under fixed conditions of deposition such as ambient gas pressure. Raman scattering spectra of the deposited SiGe ultrafine particles show three peaks intrinsic to crystalline SiGe alloys, and the linewidths of these peaks broaden due to the reduced size of the crystallites. Furthermore, a visible photoluminescence (PL) band with a peak at around 2.2 eV is obtained at room temperature after an annealing process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Furukawa, S. and Miyasato, T., Jpn. J. Appl. Phys. 27, L2207 (1988).Google Scholar
2.Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A., and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).Google Scholar
3.Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
4.Maeda, Y., Tsukamoto, N., Yazawa, Y., Kanemitsu, Y., and Masumoto, Y., Appl. Phys. Lett. 59, 3168 (1991).Google Scholar
5.Porous Silicon, edited by Feng, Z.C. and Tsu, R. (World Scientific, Singapore, 1994).Google Scholar
6.Braunstein, R., Moore, A.R., and Herman, F., Phys. Rev. 109, 695 (1958).Google Scholar
7.Gardelis, S., Rimmer, J.S., Dawson, P., Hamilton, B., Kubiak, R.A., Whall, T.E., and Parker, E.H.C., Appl. Phys. Lett. 59, 2118 (1991).Google Scholar
8.Ksendzov, A., Fathauer, R.W., George, T., Pike, W.T., Vasquez, R.P., and Taylor, A.P., Appl. Phys. Lett. 63, 200 (1993).Google Scholar
9.Werwa, E., Seraphin, A.A., Chiu, L.A., Zhou, Chuxin, and Kolenbrander, K.D., Appl. Phys. Lett. 64, 1821 (1994).Google Scholar
10.Ohyanagi, T., Miyashita, A., Murakami, K., and Yoda, O., Jpn. J. Appl. Phys. 33, 2586 (1994).Google Scholar
11.Yoshida, T., Takeyama, S., Yamada, Y., and Mutoh, K., Appl. Phys. Lett. 68, 1772 (1996).Google Scholar
12.Yamada, Y., Orii, T., Umezu, I., Takeyama, S., and Yoshida, T., Jpn. J. Appl. Phys. 35, 1361 (1996).Google Scholar
13.Pulsed Laser Deposition of Thin Films, edited by Chrisey, D.B. and Hubler, G.K. (Wiley, New York, 1994).Google Scholar
14.Antoni, F., Fogarassy, E., Fuchs, C., Grob, J.J., Prevot, B., and Stoquert, J.P., Appl. Phys. Lett. 67, 2072 (1995).Google Scholar
15.Renucci, M.A., Renucci, J.B., and Cardona, M., in Light Scattering in Solids, edited by Balkanski, M. (Flammarion, Paris, 1971), p. 326.Google Scholar
16.Brya, W.J., Solid State Commun. 12, 253 (1973).Google Scholar
17.Richter, H., Wang, Z.P., and Ley, L., Solid State Commun. 39, 625 (1981).Google Scholar
18.Yoshida, T., Yamada, Y., Takeyama, S., Orii, T., Umezu, I., and Makita, Y., Proc. SPIE 2888, 6 (1996).Google Scholar
19.Campbell, I.H. and Fauchet, P.M., Solid State Commun. 58, 739 (1986).Google Scholar
20.Okada, R. and Iijima, S., Appl. Phys. Lett. 58, 1662 (1991).Google Scholar