Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-15T18:55:21.918Z Has data issue: false hasContentIssue false

Chemical beam deposition of high-k gate dielectrics on III-V semiconductors: TiO2 on In0.53Ga0.47As

Published online by Cambridge University Press:  31 January 2011

Roman Engel-Herbert
Affiliation:
rengelhe@mrl.ucsb.edu, UCSB, Santa Barbara, California, United States
Yoontae Hwang
Affiliation:
ythwang@mrl.ucsb.edu, UCSB, Santa Barbara, California, United States
James LeBeau
Affiliation:
lebeau@mrl.ucsb.edu, UCSB, Santa Barbara, California, United States
Yan Zheng
Affiliation:
yazheng@umail.ucsb.edu, UCSB, Santa Barbara, California, United States
Susanne Stemmer
Affiliation:
stemmer@mrl.ucsb.edu, University of California, Santa Barbara, Materials Department, Santa Barbara, California, 93106-5050, United States
Get access

Abstract

We report on the growth of high-permittivity (k) TiO2 thin films on In0.53Ga0.47As channels by chemical beam deposition with titanium isopropoxide as the source. The films grew in a reaction-limited regime with smooth surfaces. High-resolution transmission electron microscopy showed an atomically abrupt interface with the In0.53Ga0.47As channel that indicated that this interface is thermally stable. Measurements of the leakage currents using metal-oxide-semiconductor capacitors with Pt top electrodes revealed asymmetric characteristics with respect to the bias polarity, suggesting an unfavorable band alignment for CMOS applications. X-ray photoelectron spectroscopy was used to determine the TiO2/In0.53Ga0.47As band offsets. A valence band offset of 2.5 ± 0.1 eV was measured.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Spicer, W. E., Chye, P. W., Skeath, P. R., Su, C. Y., and Lindau, I., J. Vac. Sci. Techn. 16, 1422 (1979).Google Scholar
[2] Souza, J. P.d., Kiewra, E., Sun, Y., Callegari, A., Sadana, D.K., Shahidi, G., Webb, D.J., Fompeyrine, J., Germann, R., Rossel, C., and Marchiori, C., Appl. Phys. Lett., 92, 153508, (2008).Google Scholar
[3] Chiu, H. C., Tung, L. T., Chang, Y. H., Lee, Y. J., Chang, C. C., Kwo, J., and Hong, M., Appl. Phys. Lett. 93, 202903 (2008).Google Scholar
[4] Koveshnikov, S., Goel, N., Majhi, P., Wen, H., Santos, M. B., Oktyabrsky, S., Tokranov, V., Kambhampati, R., Moore, R., Zhu, F., Lee, J., and Tsai, W., Appl. Phys. Lett. 92, 222904 (2008).Google Scholar
[5] Chang, Y. C., Huang, M. L., Lee, K. Y., Lee, Y. J., Lin, T. D., Hong, M., Kwo, J., Lay, T. S., Liao, C. C., and Cheng, K. Y., Appl. Phys. Lett. 92, 072901 (2008).Google Scholar
[6] Kim, H. H.-S., Ok, I., Zhu, F., Zhang, M., Park, S., Yum, J., Zhao, H., Majhi, P., Garcia Gutierrez, D. I., Goel, N., Tsai, W., Gaspe, C. K., Santos, M. B., and Lee, J. C., Appl. Phys. Let. 93, 132902 (2008).Google Scholar
[7] Smith, R. C., Ma, T. Z., Hoilien, N., Tsung, L. Y., Bevan, M. J., Colombo, L., Roberts, J., Campbell, S. A., and Gladfelter, W. L., Adv. Mater. Opt. Electron. 10, 105 (2000).Google Scholar
[8] Shannon, R. D., J. Appl. Phys. 73 348 (1993).Google Scholar
[9] Jalan, B., Engel-Herbert, R., Cagnon, J., and Stemmer, S., J. Vac. Sci. Technol. A .27, 230 (2009).Google Scholar
[10] Resch, U., Esser, N., Raptis, Y. S., Richter, W., Wasserfall, J., Förster, A., and Westwood, D. I., Surf. Sci. 269-270 797 (1992).Google Scholar
[11] Hubbard, K. J. and Schlom, D. G., J. Mater. Res. 11, 2757 (1996).Google Scholar
[12] Kim, H., McIntyre, P. C., Chui, C. O., Saraswat, K. C., and Stemmer, S., J. Appl. Phys. 96, 3467 (2004).Google Scholar
[13] Kraut, E. A., Grant, R. W., Waldrop, J. R., and Kowalczyk, S. P., Phys. Rev. B 28, 1965 (1983).Google Scholar
[14] Procop, M., J. Electron Spectrosc. & Rel. Phenom. 59 R1 (1992).Google Scholar
[15] Goetz, K. H., Bimberg, D., Jurgensen, H., Selders, J., Solomonov, A. V., Glinskii, G. F., and Razeghi, M., J. Appl. Phys. 54 4543 (1983).Google Scholar
[16] Kavan, L., Gratzel, M., Gilbert, S. E., Klemenz, C., and Scheel, H. J., J. Am. Chem. Soc. 118, 6716 (1996).Google Scholar