Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T13:28:50.567Z Has data issue: false hasContentIssue false

A Comparative Study of Residual Stresses and Microstructure in a-tC Films

Published online by Cambridge University Press:  15 February 2011

L. J. Martínez-Miranda
Affiliation:
University of Maryland, Dept. of Materials and Nuclear Engineering, College Park, MD 20742.
J. P. Sullivan
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
T. A. Friedmann
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
M. P. Siegal
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
T. W. Mercer
Affiliation:
Drexel University, Dept. of Physics, Philadelphia, PA 19104
N. J. Dinardo
Affiliation:
Drexel University, Dept. of Physics, Philadelphia, PA 19104; University of Pennsylvania, Dept. of Materials Science and Engineering, Philadelphia, PA 19104
Get access

Abstract

We compare the microstructure of highly tetrahedrally-coordinated-amorphous carbon (atC) films prepared by pulsed laser deposition (PLD), measured using both small angle x-ray scattering (SAXS) and x-ray reflectivity, with other physical properties such as film stress and electrical resistivity. These properties are controlled by the film growth conditions and film thicknesses. Films prepared under vacuum conditions exhibit a shift in the measured mass density, as a function of laser energy density. The density for films approximately 600Å thick approach that of crystalline diamond. The measured densities for thicker, approximately 1000Å films, exhibit a smaller shift, and a lower density value. This shift correlates to observed changes in film stress and electrical resistivity. The small angle signal of the reflectivity spectra suggests the presence of layering, or in-plane density variations or a combination of both within the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cuomo, J. J. et al., J. Vac. Sci., A 10, 3414 (1992).Google Scholar
2. Li, F. and Cannin, J. S., Phys. Rev. Lett., 65, 1905 (1990).Google Scholar
3. Siegal, M. P., Friedmann, T. A., Kurtz, S. R., Tallant, D. R., Simpson, R. L., Dominguez, F. and McCarty, K. F., Mat. Res. Soc. Symp. Proc., 349, 507 (1994).Google Scholar
4. Friedmann, T. A., Siegal, M. P., Tallant, D. R., Simpson, R. L. and Dominguez, F., Mat. Res. Soc. Symp. Proc., 349, 501 (1994).Google Scholar
5. Sullivan, J. P., Friedmann, T. A., Apblett, C. A. and Siegal, M. P., Mat. Res. Soc. Symp. Proc., 381, in press (1995).Google Scholar
6. Huai, Y. et al., Appl. Phys. Lett., 65, 830 (1994).Google Scholar
7. Toney, M. F. and Brennan, S., J. Appl. Phys., 66, 1861 (1989).Google Scholar
8. Martínez-Miranda, L. J. et al., submitted to Phys. Rev. B15, 1994.Google Scholar
9. Toney, M. F. et al., J. Mater. Res., 3, 351 (1988).Google Scholar
10. Lucas, C. A. et al., Appl. Phys. Lett., 59, 2100 (1991).Google Scholar
11. Kohler, Th., Frauenheim, Th., Porezag, D. and Drabold, D. A., Mat. Res. Soc. Symp. Proc., 383, in press (1995).Google Scholar
12. Mercer, T. W. et al., Mat. Res. Symp. Proc., 358, 863 (1995); L. J. Martínez-Miranda et al., Mat. Res. Soc. Symp. Proc., 358, 857 (1995).Google Scholar
13. Yan, X. and Egami, T., Phys. Rev. B, 47, 2362 (1993); H. Chen and S. M. Heald, J. Appl. Phys., 66, 1793 (1989).Google Scholar