Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T11:24:10.477Z Has data issue: false hasContentIssue false

A Comparison of Consolidation Routes for Halide Containing Wastes

Published online by Cambridge University Press:  27 March 2012

Phillip M. Mallinson
Affiliation:
Materials Science Research Division, AWE, Aldermaston, Berkshire RG7 4PR. UK
Shirley K. Fong
Affiliation:
Materials Science Research Division, AWE, Aldermaston, Berkshire RG7 4PR. UK
Eric R. Vance
Affiliation:
ANSTO, Kirrawee DC, NSW 2232. Australia
James D. Phillips
Affiliation:
Department of Materials, Imperial College, London SW7 2AZ. UK
Get access

Abstract

Research has been carried out to optimize the consolidation stage for the immobilization of pyrochemical wastes with a sodium aluminophosphate glass. The alternative techniques of hot pressing and hot isostatic pressing of the calcined wastes with the glass have been investigated. This has been performed on simulant waste material and the products investigated by scanning electron microscopy and X‑ray diffraction. The consolidation techniques were compared to each other and to the original process for suitability as a waste-form.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Donald, I.W., Metcalfe, B.L., Brenchley, M.E., Greedharee, R.S., XIX Int. Congr. Glass, Edinburgh, UK, 2001, pp722723.Google Scholar
2. Fong, S.K., Donald, I.W., Metcalfe, B.L., J. Alloys and Compounds 444, 424 (2007).10.1016/j.jallcom.2007.04.305Google Scholar
3. Metcalfe, B.L., Donald, I.W., J. Non-Crystalline Solids 348, 225 (2004).10.1016/j.jnoncrysol.2004.08.173Google Scholar
4. Metcalfe, B.L., Fong, S.K., Donald, I.W., Scientific Basis for Nuclear Waste Management XXVII 807, 255 (2004).Google Scholar
5. Donald, I.W., Metcalfe, B.L., Fong, S.K., Gerrard, L.A., Strachan, D.M., Scheele, R.D., J. Nucl. Mater. 361, 78 (2007).10.1016/j.jnucmat.2006.11.011Google Scholar
6. Utsunomiya, S., Yudintsev, S., Wang, L.M., Ewing, R.C., J. Nucl. Mater. 322, 180 (2003).10.1016/S0022-3115(03)00327-1Google Scholar
7. Vance, E.R., Ball, C.J., Begg, B.D., Carter, M.L., Day, R.A., Thorogood, G.J., J. Amer. Ceram. Soc. 86, 1223 (2003).10.1111/j.1151-2916.2003.tb03455.xGoogle Scholar
8. Elliot, C., The Struture and Chemistry of the Apatites and Other Calcium Orthophosphates (Elsevier, Amsterdam, 1994).Google Scholar
9. Michie, E., Grimes, R., Boccaccini, A., J. Mater. Sci. 43, 4152 (2008).10.1007/s10853-007-2232-3Google Scholar
10. Pace, S., Cannillo, V., Wu, J., Boccaccini, D.N., Saglem, S., Boccaccini, A.R., J. Nucl. Mater. 341, 12 (2005).10.1016/j.jnucmat.2005.01.005Google Scholar
11. Raman, S.V., J. Mater. Sci. 33, 1887 (1998).10.1023/A:1004313623562Google Scholar
12. Zhang, Y., Stewart, M.W.A., Li, H., Carter, M.L., Vance, E.R., Moricca, S., J. Nucl. Mater. 395, 69 (2009).10.1016/j.jnucmat.2009.09.019Google Scholar
13. Carter, M.L., Gillen, A.L., Olufson, K., Vance, E.R., J. Amer. Ceram. Soc. 92, 1112 (2009).10.1111/j.1551-2916.2009.03021.xGoogle Scholar
14. Rietveld, H.M., Acta Cryst. 22, 151 (1967).10.1107/S0365110X67000234Google Scholar
15. Rietveld, H.M., J. Appl. Cryst. 2, 65 (1969).10.1107/S0021889869006558Google Scholar
16. Bruker-AXS, Diffrac PLUS Evaluation Package Release 2006-EVA V12 .Google Scholar
17. Database, PDF 4+ (2008).Google Scholar
18. Toby, B.H., J. Appl. Cryst. 34, 210 (2001).10.1107/S0021889801002242Google Scholar