Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T19:28:15.338Z Has data issue: false hasContentIssue false

Comparison of Microwave Dielectric Properties of between (001) and (011) Ferroelectric Ba1-xSrxTiO3 Thin Films grown by Pulsed Laser Deposition

Published online by Cambridge University Press:  01 February 2011

Seung Eon Moon
Affiliation:
Wireless Communication Devices Department, Electronics and Telecommunications Research Institute, Taejon, 305-350, Korea.
Eun-Kyoung Kim
Affiliation:
Wireless Communication Devices Department, Electronics and Telecommunications Research Institute, Taejon, 305-350, Korea.
Su-Jae Lee
Affiliation:
Wireless Communication Devices Department, Electronics and Telecommunications Research Institute, Taejon, 305-350, Korea.
Seok-Kil Han
Affiliation:
Wireless Communication Devices Department, Electronics and Telecommunications Research Institute, Taejon, 305-350, Korea.
Kwang-Yong Kang
Affiliation:
Wireless Communication Devices Department, Electronics and Telecommunications Research Institute, Taejon, 305-350, Korea.
Won-Jeong Kim
Affiliation:
Wireless Communication Devices Department, Electronics and Telecommunications Research Institute, Taejon, 305-350, Korea.
Get access

Abstract

The effects of anisotropic dielectric properties of ferroelectric Ba1-xSrxTiO3 (BST) films on the characteristics of phase shifter have been studied in microwave regions at room temperature. Ferroelectric BST films with (001) and (011) orientation were epitaxially grown on (001) and (011) MgO substrates, respectively, by pulsed laser deposition method. The structures of BST films were investigated using x-ray diffraction measurement. The microwave properties of orientation engineered BST films were investigated using coplanar waveguide transmission lines that were fabricated on BST films using a thick metal layer by photolithography and etching process. The measured differential phase shift and insertion loss (S21) for (011) BST films are larger than those for (001) BST films. Dielectric constants of the ferroelectric BST films are calculated from the measured S21 using a modified conformal-mapping model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lancaster, M. J., Powell, J., and Porch, A., Supercond. Sci. Technol. 11, 1323 (1998).Google Scholar
2. Mantese, J. V., Schubring, N. W., Micheli, A. L., Catalan, A. B., Mohammed, M. S., Naik, R., and Auner, G. W., Appl. Phys. Lett. 71, 2047 (1997).Google Scholar
3. Chang, W., Gilmore, C. M., Kim, W. J., Pond, J. M., Kirchoefer, S. W., Qadri, S. B., Chirsey, D. B., and Horwitz, J. S., J. of. Appl. Phys. 87, 3044 (2000).Google Scholar
4. Keuls, F. W. Van, Mueller, C. H., Miranda, F. A., Romanofsky, R. R., Canedy, C. L., Aggarwal, S., Venkatesan, T., Ramesh, R., Horwitz, J. S., Chang, W., and Kim, W. J., IEEE MTT-S 2, 737 (1999).Google Scholar
5. Jun, S., Kim, Y. S., Kim, Y. W., and Lee, J., Appl. Phys. Lett. 78, 2542 (2001).Google Scholar
6. Carlson, C. M., Rivkin, T. V., Parilla, P. A., Perkins, J. D., Ginley, D. S. Kozyrev, A. B., Oshadchy, V. N., and Pavlov, A. S., Appl. Phys. Lett. 76, 1920 (2000).Google Scholar
7. Canedy, C. L., Aggarwal, S., Li, H., Venkatesan, T., Ramesh, R. Keuls, F. W. Van, Romanofsky, R. R., and Miranda, F. A., Appl. Phys. Lett. 77, 1523 (2000).Google Scholar
8. Erker, E. G., Nagra, A. S., Liu, Y., Periaswamy, P., Taylor, T. R., Speck, J., and York, R. A., IEEE Micro. And Guided Wave Lett. 10, 10 (2000).Google Scholar
9. Park, B. H., Peterson, E.J., Jia, Q. X., Lee, J., Zeng, X., Si, W., and Xi, X. X., Appl. Phys. Lett. 78, 533 (2001).Google Scholar
10. Chang, W., Horwitz, J. S., Kim, W. J., Pond, J. M., Krichoefer, S. W., Gilmore, C. M., Qadri, S. B., and Chrisey, D. B., Mat. Res. Soc. Symp. Proc. 541, 699 (1999).Google Scholar
11. Sengupta, L. C., Ngo, E., O'Day, M. E., Stowell, S., and Lancto, R., ISAF '94. Proceedings of the Ninth IEEE International Symposium on Applications of Ferroelectrics 622 (1995).Google Scholar
12. Kim, W. J., Chang, W., Qadri, S. B., Pond, J. M., Krichoefer, S. W., Chrisey, D. B., and Horwitz, J. S., Appl. Phys. Lett. 76, 1185 (2000).Google Scholar
13. Chang, W., Horwitz, J. S., Kim, W. J., Pond, J. M., Krichoefer, S. W., Gilmore, C. M., Qadri, S. B., and Chrisey, D. B., Mat. Res. Soc. Symp. Proc. 541, 693 (1999).Google Scholar
14. Kim, W. J., Chang, W., Qadri, S. B., Pond, J. M., Kirchoefer, S. W., Horwitz, J. S., and Chrisey, D.B., Appl. Phys. A 70, 313 (2000).Google Scholar
15. Gevorgian, S. S., Martinsson, T., Linner, P. I. J., and Kollberg, E.L., IEEE Trans. Microwave Theory Tech. 44, 896 (1996).Google Scholar
16. Carlsson, E., and Geovorgian, S., IEEE Trans. Microwave Theory Tech. 47, 1544 (1999).Google Scholar