Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T21:32:27.774Z Has data issue: false hasContentIssue false

Contactless Electromodulation Characterization of Compound Semiconductor Surfaces and Device Structures

Published online by Cambridge University Press:  22 February 2011

J.M. Woodall*
Affiliation:
School of Electrical Engineering, Purdue University, West Lafayette, IN 47907-1285 USA
Get access

Abstract

This paper will review the use of contactless electromodulation methods, such as photoreflectance (PR) and contactless electroreflectance (CER), to characterize the electronic properties of compound semiconductor surfaces exposed to different growth and post-growth conditions. Also the characterization of properties critical to device performance can be evaluated. For example, using PR and CER it has been found that there is a lower density of surface hole traps than electron traps in certain as-grown MBE (001) GaAs samples and that this condition persists even after air exposure. This behaviour is in contrast to other samples, including both bulk and MBE grown (001) surfaces in which the Fermi level is pinned mid-gap for both n- and p-type structures. We also have observed that Ar+ bombardment under UHV conditions results in Fermi level pinning close to the conduction band edge and that thermal annealing restores mid-gap pinning. Finally, using PR we are able to characterize the electric fields and associated doping levels in the emitter and collector regions of heterojunction bipolar transistor structures (fabricated from III-V materials), thus demonstrating the ability to perform inprocess evaluation of important device parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pollak, F.H. and Shen, H., Materials Science and Engineering R:Reports, R10 (1993) 275.Google Scholar
2. Glembocki, O. J. and Shanabrook, B. V., Semiconductors and Semimetals, Vol. 67, ed. Seiler, D.G. and Littler, C.L. (Academic, New York, 1992) p. 222.Google Scholar
3. Yin, X., Chen, H-M., Pollak, F. H., Cao, Y., Montano, P. A., Kirchner, P. D., Pettit, G. D. and Woodall, J. M., J. Vac. Sci. Technol., B9, 2114 (1991).Google Scholar
4. Glembocki, O. J., Dagata, J.A., Snow, E.S. and Katzer, D.S., Appl. Surf. Sci., 63, 143 (1993).CrossRefGoogle Scholar
5. Pollak, F.H., Qiang, H., Yan, D., Yin, Y., and Boccio, V.Y., Photonics Spectra Magazine, Vol. 27, Issue 8, August 1993, p. 78.Google Scholar
6. Aspnes, D.E., Phys. Rev., B10, 4228 (1974).CrossRefGoogle Scholar
7. Woodall, J.M., Kirchner, P.D., Freeouf, J.L., Mclnturff, D.T., Melloch, M.R. and Pollak, F.H., Phil. Trans. R. Soc. Lond. 344, 521 (1993).Google Scholar
8. Fischetti, M. V. and Laux, S. E., IEEE Trans. Electron Devices 38, 650 (1991).CrossRefGoogle Scholar
9. Shen, H., Dutta, M., Fotiadis, L., Newman, P. G., Moerkirk, R. P., Chang, W. H. and Sacks, R. N., Appl. Phys. Lett., 57, 2118 (1990).Google Scholar
10. Yin, X., Chen, H.-M., Pollak, F. H., Chan, Y., Montano, P. A., Kirchner, P. D., Pettit, G. D. and Woodall, J. M., Appl. Phys. Lett., 58, 260 (1991).Google Scholar
11. Pollak, F.H., J. Vac Sci. Technol., B11, 1710 (1993).Google Scholar
12. Yin, X., Chen, H.-M., Pollak, F. H., Cao, Y., Montano, P. A., Kirchner, P. D., Pettit, G. D. and Woodall, J. M., J. Vac. Sci. Technol., A10, 131 (1992).Google Scholar
13. Warren, A. C., Woodall, J. M., Kirchner, P. D., Yin, X., Pollak, F., Melloch, M. R., Otsuka, N., and Mahalingam, K., Phys. Rev., B46, 4617 (1992); H. Shen, F. C. Rong, R. Lux, J. Pamulapati, M. Dutta, M. Taysing-Lara, E. H. Poindexter, L. Calderon, and Y. Lu, Appl. Phys. Lett., 61, 1585 (1992); D. C. Look, D. C., J. E. Hoelscher, J. T. Grant, C. E. Stutz, K. R. Evans, and M. Numan, Mat. Res. Soc. Symp. Proc., 241, 87 (1991).CrossRefGoogle Scholar
14. Yan, D., Look, E., Yin, X., Pollak, F.H., Pettit, G.D. and Woodall, J.M., submitted to Appl. Phys. Lett.Google Scholar
15. Pashley, M.D., Haberern, K.W., Feenstra, R.M. and Kirchner, P.D., Phys. Rev. B48, 4612 (1993).Google Scholar
16. Tsubomura, H. and Kobayashi, H., Critical Reviews in Solid State and Materials Science, 18, 261 (1993).Google Scholar
17. Ostermayer, F.W. and Kohl, P.A., Appl. Phys. Lett., 39, 76 (1981).CrossRefGoogle Scholar
18. Tomkiewicz, M. and Woodall, J.M., J. Electrochem. Soc. 124, 1436 (1977).CrossRefGoogle Scholar
19. Spicer, W. E., Lindau, I., Skeath, T. and Su, C.Y., J. Vac. Sci. Technol. 17, 1019 (1980).CrossRefGoogle Scholar
20. Yin, X., Pollak, F. H., Pawlowicz, L., O'Neill, T. J. and Hafizi, M., Appl. Phys. Lett. 56, 1278 (1990).Google Scholar
21. Yin, X., Pollak, F. H., Pawlowicz, L., O'Neill, T. J. and Hafizi, M., Proc. Soc. Photo-Optical Instrum. Engineers (SPIE, Bellingham, 1990) 1286, 404 (1990).Google Scholar
22. Bottka, N., Gaskill, D. K., Wright, P. D., Kaliski, R. W. and Williams, D. A., J. Cryst. Growth 107, 893 (1991).CrossRefGoogle Scholar
23. Yan, D., Pollak, F.H., Boccio, V.T., Lin, C.L., Kirchner, P.D., Woodall, J. M., Gee, R.C. and Asbeck, P.M., Appl. Phys. Lett. 61, 2066 (1992).Google Scholar
24. Yang, L.W., Martin, P.A., Mazurowski, J.S., Ballingall, J.M., Yin, Y., Yan, D., Pollak, F.H., West, W., Davito, D.B. and Kirchner, P.D., presented at the 1993 Electronic Materials Conference, Santa Barbara, June 1993 and submitted to J. Electron. Mat.Google Scholar
25. Hsu, K.T., Chen, Y.H., Chen, K.L., Chen, H.P., Lin, H.H. and Jan, G.J., submitted to Appl. Phys. Lett.Google Scholar
26. Badakhshan, A., Durbin, C., Giordona, A., Glosser, R., Lambert, S. A. and Liu, J., Nanostructure Physics and Fabrication, eds. Reed, M. A. and Kirk, W. P. (Academic, New York, 1989) pp. 485493.Google Scholar