Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T02:03:04.939Z Has data issue: false hasContentIssue false

Controllable Synthesis of ZnO Nanonails by Vapor-Solid Process: Growth Mechanism and Structural and Optical Properties

Published online by Cambridge University Press:  01 February 2011

Ahmad Umar
Affiliation:
ybhahn@chonbuk.ac.kr, Chonbuk National University, Department of chemical Engineering and Technology, Jeonju 561-756, Korea, Republic of
Q. Ahsanul Haq
Affiliation:
ybhahn@chonbuk.ac.kr, Chonbuk National University, Department of chemical Engineering and Technology, Jeonju, 561-756, Korea, Republic of
Sang Hoon Kim
Affiliation:
ybhahn@chonbuk.ac.kr, Chonbuk National University, Department of chemical Engineering and Technology, Jeonju, 561-756, Korea, Republic of
Yeon Ho Im
Affiliation:
ybhahn@chonbuk.ac.kr, Chonbuk National University, Department of chemical Engineering and Technology, Jeonju, 561-756, Korea, Republic of
Yoon Bong Hahn
Affiliation:
ybhahn@chonbuk.ac.kr, Chonbuk National University, Department of chemical Engineering and Technology, Jeonju, 561-756, Korea, Republic of
Get access

Abstract

Single-crystalline with good optical properties aligned ZnO nanonails were grown on steel alloy substrate without the use of metal catalyst or additives by the thermal evaporation process using high purity metallic zinc powder and oxygen as source materials for zinc and oxygen, respectively. Detailed morphological studies by FESEM revealed that the obtained nanonails are grown in a high density over the whole substrate surface and are exhibiting perfect hexagonal-shaped caps. The diameters of the nanonails at their tops and bases are ranges from 120∼160nm and 50∼70 nm, respectively. The detailed structural characterizations confirmed that the synthesized nanostructures are single-crystalline and grown along the c-axis direction. Raman scattering and room-temperature photoluminescence studies demonstrated the wurtzite hexagonal phase and good optical properties, respectively for the grown nanonails.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alvisatos, A. P., Science 271, 933 (1996).Google Scholar
2. Cui, Y. and Lieber, C. M., Science 291, 851 (2001).Google Scholar
3. Keis, K., Vayssieres, L., Lindquist, S. and Hagfeldt, A., Nanostuct. Mater. 12, 487 (1999).Google Scholar
4. Arnold, M.S., Avouris, P., Pan, W.Z. and Wang, Z.L., J. Phys. Chem. B. 107, 659 (2003).Google Scholar
5. Golra, C.R., Emanetoglu, N.W., Liang, S., Mayo, W.E., Lu, Y., Wraback, M. and Shen, H.J., Appl. Phys. 85, 2595 (1999).Google Scholar
6. Gordillo, G., Surf. Rev. Lett. 9, 1675 (2002).Google Scholar
7. Pal, B. and Sharon, M., Mater. Chem. Phys. 76, 82 (2002).Google Scholar
8. Minne, S. C., Manalis, S. R. and Quate, C. F., Appl. Phys. Lett., 67, 3918 (1995).Google Scholar
9. Umar, A., Suh, E. K. and Hahn, Y. B., Solid State Commun. 139, 447 (2006).Google Scholar
10. Umar, A., Karunagaran, B., Suh, E. K. and Hahn, Y. B., Nanotechnology 17, 4072 (2006).Google Scholar
11. Umar, A., Lee, S., Lee, Y. S., Nahm, K. S. and Hahn, Y. B., J. Crystal Growth 277, 479 (2005).Google Scholar
12. Umar, A., Kim, S.H., Im, Y.H. and Hahn, Y.B., Superlattices and Microstructures 39, 238 (2006).Google Scholar
13. Umar, A., Kim, S.H., Lee, Y.S., Nahm, K.S. and Hahn, Y.B., J. Crystal Growth 282, 131 (2005).Google Scholar
14. Umar, A. and Hahn, Y. B., Nanotechnology 17, 2174 (2006).Google Scholar
15. Umar, A. and Hahn, Y. B., App. Phys. Lett. 88, 173120 (2006).Google Scholar
16. Umar, A., Lee, S., Im, Y. H. and Hahn, Y. B., Nanotechnology 16, 2462 (2005).Google Scholar
17. Umar, A., Jeong, J. P., Suh, E. K. and Hahn, Y. B., Korean J. Chem. Engg. 23, 860 (2006).Google Scholar
18. Umar, A., Im, Y. H. and Hahn, Y. B., J. Electronic Mater. 35, 758 (2006).Google Scholar
19. Sekar, A., Kim, S. H., Umar, A. and Hahn, Y. B., J. Crystal Growth, 277, 471 (2005).Google Scholar
20. Umar, A., Ra, H. W., Jeong, J. P., Suh, E. K. and Hahn, Y. B., Korean J. Chem. Engg, 23, 499 (2006).Google Scholar
21. Lao, J. Y., Huang, J. Y., Wang, D.Z. and Ren, Z. F., Nano Lett. 3, 235 (2003).Google Scholar
22. Yao, B. D., Chan, Y. F., and Wang, N., Appl. Phys. Lett. 81, 757 (2002).Google Scholar
23. Vanheusden, K., Seager, C.H., Warren, W.L., Tallant, D.R. and Voigt, J.A., J.App. Phys. 79, 7983 (1996).Google Scholar
24. Van Dijken, A., Meulenkamp, E., Vanmaekelbergh, D. and Meijerink, A., J. Phys. Chem. B. 104, 1715 (2000).Google Scholar