Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T16:23:39.752Z Has data issue: false hasContentIssue false

Defect-Induced Photoluminescence from Pulsed Laser Annealed Si

Published online by Cambridge University Press:  15 February 2011

M S Skolnick
Affiliation:
Royal Signals and Radar Establishment, St Andrews Road, Great Malvern, Worcestershire, UK.
A G Cullis
Affiliation:
Royal Signals and Radar Establishment, St Andrews Road, Great Malvern, Worcestershire, UK.
H C Webber
Affiliation:
Royal Signals and Radar Establishment, St Andrews Road, Great Malvern, Worcestershire, UK.
Get access

Abstract

Low temperature photoluminescence is used to study damage centers in ion implanted, pulsed laser annealed Si. A number of intense, damage related photoluminescence lines W, G and 13 are observed. It is shown that most of the W (and 13) centers are created by solid phase annealing of implant damage beyond the laser melted region. Peak G, on the other hand, is present in the tail of the implant damage before laser annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Khaibullin, I. B., Shtyrkov, E. I., Zaripov, M. M., Galyantdinov, M. F. and Zakirov, G. G., Sov. Phys. Semicond 11, 190, (1977).Google Scholar
2. Cullis, A. G., Webber, H. C. and Chew, N. G., Appl. Phys. Lett. 36, 547, (1980).CrossRefGoogle Scholar
3. For a review see Kimerling, L. C. and Benton, J. L. in Laser and Electron Beam Processing of Materials edited by White, C. W. and Peercy, P. S. (Academic Press, 1980) p 385.Google Scholar
4. Jastrzebski, L., Bell, A. E. and Wu, C. P., Appl. Phys. Lett. 35, 608, (1979).Google Scholar
5. Skolnick, M. S., Cullis, A. G. and Webber, H. C. submitted to Appl. Phys. Lett.Google Scholar
6. Street, R. A., Johnson, N. M. and Gibbons, J. F., J. Appl. Phys. 50, 8201, (1980).Google Scholar
7. Cullis, A. G., Webber, H. C. and Bailey, P., J. Phys. E12, 688, (1979).Google Scholar
8. Tkachev, V. D. and Mudryi, A. V. in Proceedings of the International Conference on Radiation Effects in Semiconductors, Dubrovnik 1976, p 231.Google Scholar
9. Kirkpatrick, C. G., Noonan, J. R. and Streetman, B. G., Radiation Effects, 30, 97, (1976).Google Scholar
10. Lee, Y. H. and Corbett, J. W., Phys Rev B8, 2810, (1973).Google Scholar
11. Skolnick, M. S. and Dean, P. J., unpublished work. A similar result has been obtained by Sauer, R. and co-workers, University of Stuttgart. Private communication, 1980.Google Scholar
12. Brodsky, M. H., Title, R. S., Weiser, K. and Pettit, G. D., Phys. Rev. B1, 2632, (1970).Google Scholar
13. Nakashima, H., Shiraki, Y. and Miyao, M., J. Appl. Phys 50, 5966, (1979).Google Scholar
14. Baeri, P., Campisano, S. U., Foti, G. and Rimini, E., J. Appl. Phys. 50, 788, (1979).Google Scholar
15. Tamor, M. A. and Wolfe, J. P., Phys. Rev. Letters 44, 1703, (1980).Google Scholar